

CÁLCULO DEL CO2eq FIJADO INSTITUCIONAL

AUTORES

DIRECCIÓN DE SEGURIDAD, HIGIENE Y
DESARROLLO SUSTENTABLE
SECRETARÍA DE PLANEAMIENTO,
OBRAS Y SERVICIOS DE LA UNLP

DICIEMBRE 2022

PRESIDENTE DE LA UNLP

Mg Martín López Armengol

VICEPRESIDENTE DEL ÁREA ACADÉMICA

Dr Arq Fernando Tauber

VICEPRESIDENTE DEL ÁREA INSTITUCIONAL

Dra. Andrea Mariana Varela

SECRETARIO DE PLANEAMIENTO, OBRAS Y SERVICIOS

Arq Diego Delucchi

PROSECRETARIO DE PLANEAMIENTO, OBRAS Y SERVICIOS

Arq Agustín Olivieri

DIRECTOR DE SEGURIDAD, HIGIENE Y DESARROLLO SUSTENTABLE

Mg Arq Andrés Fiandrino

GRUPO DE TRABAJO

Est Ing For Verónica Ayelén Aguirre

Est Ing For Rocio Lara Arcidiácono

Ing For Lucia Bottan

Est Ing For Silvia Vanesa Bautista Berrios

Dr Juan Manuel Cellini

Est Ing For Nirvana Nahir Churquina

Est Ing For Nadia Paola Kastelanovich

Est Ing For Camila Alejandra Miguel Villeda

Est Ing For Jorgelina Poulsen

1. RESUMEN

La Reducción del CO2 atmosférico es la intervención humana para disminuir las fuentes o mejorar los sumideros de Gases de Efecto Invernadero (GEI). El análisis de la fijación de Carbono proporciona como resultado un dato que puede ser utilizado como indicador ambiental global de la mitigación que desarrolla la Universidad. Los objetivos de este trabajo fueron estimar el CO2 fijado por el arbolado de la Universidad Nacional de La Plata y obtener información de las dimensiones, especies y la ubicación geográfica de las especies forestales que se encuentran dentro de los predios de la UNLP. El cálculo de la fijación de Carbono de la UNLP consistió en realizar la sumatoria del CO₂ fijado por los árboles en el periodo de un año. Se realizaron mediciones de árboles individuales y se instalaron parcelas de muestreo para estas estimaciones. Para el cálculo del crecimiento anual en diámetro de las especies presentes en las dependencias de la UNLP se remidió la base de datos del inventario forestal del Paseo del Bosque de la ciudad de La Plata, correspondientes a los años 2004, 2005 y 2006. Se utilizó la metodología recomendada por la Convención Marco de las Naciones Unidas sobre el Cambio Climático (UNFCCC) para el cálculo del Carbono fijado. Se realizó una búsqueda bibliográfica de modelos de biomasa para cada especie, con el fin de aplicar ese modelo y lograr el cálculo de Kg de biomasa aérea para cada árbol. Los resultados mostraron una gran diferencia entre dependencias con respecto a la fijación de CO2. El CO2eq fue de un total de 5176.7 Mg para las dependencias de la UNLP sin contar la Reserva del Valle del Arroyo Cuña Pirú. Se observa una baja proporción de especies nativas existentes (92 de un total de 259 especies) y un menor aporte de estas en el CO2eq (132.5 Mg) con una gran riqueza de especies forestales y un muy buen estado de conservación. El valor total de la huella de carbono de la UNLP para el año 2019 fue de 8647.71 Mg de CO₂eq, lo que resulta 3470.93 Mg de CO₂eq que no son fijados por los árboles de la UNLP sin contar la Reserva del Valle del Arroyo Cuña Pirú. Sin embargo, si se contabiliza esta reserva, el valor fijado alcanza los 19537.95 Mg de CO₂eq, excediendo la Huella de carbono institucional. Se recomienda la plantación de especies forestales en dependencias que poseen terreno propicio para hacerlo, con ejemplares pertenecientes a la Flora de la Provincia de Buenos Aires y con Quercus robur -cuyas hojas fueron inspiración del distintivo de la UNLP- ya que se encuentra pobremente representada en el arbolado de la UNLP. Se sugiere realizar la extracción de los ejemplares muertos o con solo una pequeña porción de su copa en buen estado, y su debida reposición con especies recomendadas y aumentar el número de parcelas de muestreo en algunas dependencias

2. INTRODUCCIÓN

En el marco del "Programa de Gestión Ambiental y de Prevención de riesgos" de la Dirección de Seguridad, Higiene y Desarrollo Sustentable (DSHyDS) y el "Proyecto de Cálculo de la Huella de Carbono Institucional" de la Universidad Nacional de La Plata (UNLP), el presente informe busca ofrecer un valor de CO₂ fijado por el arbolado de todas las dependencias pertenecientes a la UNLP.

3. OBJETIVOS

Estimar el CO₂ fijado por el arbolado de la Universidad Nacional de La Plata.

Obtener información de las dimensiones, especies y la ubicación geográfica de las especies forestales que se encuentran dentro de los predios de la UNLP.

Propósitos

Fortalecimiento de la gestión y sensibilización ambiental en la UNLP, con el fin de maximizar la fijación de CO₂ por el arbolado y compararlo con el impacto de nuestra actividad institucional en el ambiente.

Fomento de la cooperación interna para el intercambio de experiencias de desarrollo sustentable y ambientalización universitaria.

Promoción de grupos de trabajo dedicados al estudio de temas específicos y prioritarios.

Actividades

Obtener el CO₂ fijado por el arbolado de la Universidad Nacional de La Plata, como indicador objetivo de las acciones a ejecutar para el desarrollo sustentable de la UNLP.

Concepto de Fijación de Carbono

La Reducción del CO₂ atmosférico es la intervención humana para disminuir las fuentes o mejorar los sumideros de Gases de Efecto Invernadero (GEI). También es atribuible a la disminución de los posibles efectos adversos de los peligros físicos, exposición y vulnerabilidad asociada al cambio climático. Su aplicación se asocia a propender hacia una economía más baja en Carbono, que contribuya al desarrollo sustentable y a los esfuerzos mundiales de reducción de emisiones. Se entiende como Fijación de Carbono a la conversión de Carbono inorgánico (en forma de dióxido de Carbono atmosférico) en compuestos orgánicos realizada por seres vivos. El ejemplo más importante de fijación de Carbono tiene lugar en la fotosíntesis durante la fase oscura. De esta forma, definiremos como Fijación de Carbono o Fijación del CO₂ atmosférico de una organización a la totalidad de CO₂ fijados por efecto directo de los árboles de dicha organización. Visto la institución Universidad, la fijación de Carbono seguirá los parámetros establecidos para una "organización". El análisis de la fijación de Carbono proporciona como resultado un dato que puede ser utilizado como indicador ambiental global de la mitigación que desarrolla la Universidad.

Base metodológica de cálculo

El cálculo de la fijación de Carbono por los árboles de la UNLP, consiste en realizar la sumatoria del CO_2 fijado por los árboles en el periodo de un año. Como resultado de este cálculo obtendremos una cantidad (g, kg, Mg, etc.) determinada de dióxido de Carbono equivalente (CO_2 eq). Los Mg de CO_2 eq es la unidad universal de medida que indica el potencial de calentamiento atmosférico o potencial de calentamiento global.

Antes de realizar los cálculos, definiremos una serie de decisiones que enmarcan este cálculo. Estas decisiones se resumen en los siguientes puntos:

- 1. Establecer los límites de la Universidad y los límites operativos. Consistirá en decidir qué áreas de la Universidad se incluirán en la recolección de información y en los cálculos.
- 2. Elegir el periodo para el que se va a calcular la fijación de Carbono. Normalmente éste coincide con el año inmediatamente anterior al año en el que se realiza el cálculo.
- 3. Elegir sobre qué plantas se realizarán las mediciones. Usualmente el cálculo se realiza en árboles de diferentes especies que presenten un diámetro normal a 1,3 m de altura mayor a 10 cm.
- 4. En base a las mediciones de las variables, se seleccionan modelos matemáticos para calcular la biomasa aérea de cada árbol, la subterránea, el contenido de carbono y su relación con el CO₂ atmosférico y en base a estos datos, se calcula el CO₂eq.
- 5. En las dependencias de la UNLP en donde no es posible acceder (Por ejemplo la Reserva del Valle del Arroyo Cuña Pirú). Se realizó la estimación del CO₂eq consultando datos de la bibliografía.

Límites de este estudio

El límite temporal corresponde al período comprendido entre el 1 de enero de 2022 al 31 de diciembre de 2022. El límite físico para el cual aplica la fijación de CO₂eq, comprende a las siguientes dependencias edilicias, terrenos y propiedades que se encuentran detalladas en la Tabla 1.

Tabla 1. Ubicación y superficie de las dependencias de la UNLP.

1- Colegio Agropecuario Inchausti

LOCALIDAD: Estación Valdez, 25 de mayo. SUPERFICIE DEL TERRENO: 47241612 m²

2- Facultad de Ciencias Agrarias, Campo 6 de agosto

LOCALIDAD: Avenida 60 y 128, Berisso. SUPERFICIE DEL TERRENO: 555396 m²

3- Facultad de Ciencias Agrarias, Estación experimental Julio Hirschhörn

LOCALIDAD: Avenida 66, Calle 197, Calle 72 y Calle 173, Los Hornos. SUPERFICIE DEL TERRENO: 641484 m²

4- Facultad de Ciencias Veterinarias, Centro de Investigaciones Veterinarias – CEDIVE

LOCALIDAD: Calle Alvear y Salta, Chascomús. SUPERFICIE DEL TERRENO: 888 m²

5- Facultad de Informática – Programa E-Basura

LOCALIDAD: Calle 3 N° 525, La Plata. SUPERFICIE DEL TERRENO: 285 m²

6- Facultad de Ingeniería – Instituto Malvinas de Políticas Soberanas

LOCALIDAD: Diagonal 80 entre 41 y 42, La Plata. SUPERFICIE DEL TERRENO: 4299 m²

7- Facultad de Cs Agrarias y Veterinarias – Santa Catalina

LOCALIDAD: Av. Juan XXIII Barrio Santa Catalina, Lomas de Zamora. SUPERFICIE DEL TERRENO 3595164 m²

8- Presidencia - Albergue Estudiantil UNLP

LOCALIDAD: Calle 61 y Calle 128, Berisso. SUPERFICIE DEL TERRENO 7635 m²

9- Presidencia – Ex Hospital de los trabajadores de la carne

LOCALIDAD: Calle Punta Arenas y Constitución, Berisso. SUPERFICIE DEL TERRENO: 1807 m²

10- Presidencia – Museo y Finca Samay Huasi

LOCALIDAD: Chilecito, La Rioja. SUPERFICIE DEL TERRENO: 660000 m²

11- GBC - Grupo bosque centro - Facultades de Cs Astronómicas, Planetario y Jardín Maternal

LOCALIDAD: Av. Pereira Iraola, Paseo del Bosque, La Plata. SUPERFICIE DEL TERRENO: 70930 m²

12- GBC - Grupo bosque centro - Museo de Ciencias Naturales

LOCALIDAD: Av. Pereira Iraola, Paseo del Bosque, La Plata. SUPERFICIE DEL TERRENO: 8472 m²

13- GBE –Grupo bosque este – Parcela A

LOCALIDAD: Diag. 113, Bv. 120 y Calle 64, La Plata. SUPERFICIE DEL TERRENO: 187836 m². UNIDADES: Facultad de Ciencias Agrarias y Forestales, Edificio Central, Edificio Escuela de Bosques, INFIVE, INIFTA, LEA, IFLP, Facultad de Ciencias Médicas, Edificio Central, CIC – INIBIOLP, Edificio Hospital Integrado, Facultad de Ciencias Naturales y Museo, INREMI, CIG – CONICET, Facultad de Ciencias Veterinaria, Hospital Grandes Animales, Hospital Pequeños, Facultad de Periodismo y Comunicación Social, Facultades de Ciencias Agrarias y Ciencias Veterinarias, Biblioteca DOS Facultades.

14- GBE –Grupo bosque este – Parcela B

LOCALIDAD: Av. 122 y Calle 61, La Plata. SUPERFICIE DEL TERRENO: 39158 m². UNIDADES: Facultad de Ciencias Exactas, CREG, CEQUINOR – CONICET, Edificio Polo de Investigación, Facultad de Ciencias Naturales y Museo, Edificio Central, CEPAVE – CONICET, ILPLA – CONICET, Presidencia - Comedor Universitario, Sede Bosque Este, Imprenta, Taller de Mantenimiento DGCM.

15- GBE –Grupo bosque este – Parcela C / ex predio Autoridad del Agua

LOCALIDAD: Calles 64, Calle 66, Diag. 113 y Vías del FFCC, La Plata. SUPERFICIE DEL TERRENO: 14086 m²

16- GBN -Grupo bosque norte

LOCALIDAD: Av. 122, Calle 50 y Vías del FFCC, Ensenada. SUPERFICIE DEL TERRENO: 91773 m². UNIDADES: Facultad de Humanidades y Ciencias de la Educación, Facultad de Psicología - Edificio Central, Presidencia - Refugio Línea Universitaria.

17- GBO -Grupo bosque oeste - Parcela A

LOCALIDAD: Av. 1, Calle 47, Calle 50 y Vías del FFCC, La Plata. SUPERFICIE DEL TERRENO: 174086 m². UNIDADES: Colegio Nacional "Rafael Hernández", Escuela Graduada Joaquín V. González, Facultad de Arquitectura y Urbanismo, Facultad de Ciencias Exactas, CESPI, Facultad de Informática, Facultad de Ingeniería, Instituto de Educación Física, Presidencia – CESPI, Comedor.

18- GBO - Grupo bosque oeste - Parcela B - Facultad de Odontología

LOCALIDAD: Av. 1 y Calle 50, La Plata. SUPERFICIE DEL TERRENO: 10984 m²

19- GBU - Grupo urbano centro - Facultad de Bellas Artes - Edificio anexo

 $LOCALIDAD: Calle 8 \ N^{\circ} \ 1324 \ e/\ Calle 59 \ y \ Calle 60, \ La \ Plata. \ SUPERFICIE \ DEL \ TERRENO: 300 \ m^{2}. \ UNIDADES: Facultad de Bellas Artes - Edificio Anexo CASA$

20- GBU - Grupo urbano centro - Facultad de Bellas Artes - Edificio anexo calle 8

LOCALIDAD: Calle 8 N° 1377 e/ Av. 60 y Diag. 78, La Plata. SUPERFICIE DEL TERRENO: 552 m². UNIDADES: Facultad de Bellas Artes - Edificio ANEXO

21- GBU – Grupo urbano centro – Facultad de Ciencias Económicas – Hotel escuela

LOCALIDAD: Av. 51 N° 696 e/ Calle 8 y Calle 9. La Plata. SUPERFICIE DEL TERRENO: 763 m²

22- GBU – Grupo urbano centro – Facultad de Ciencias Jurídicas y Sociales – Edificio anexo Biblioteca

LOCALIDAD: Calle 47 N° 522 e/ Calle 5 y Calle 6, La Plata. SUPERFICIE DEL TERRENO: 400 m²

23- GBU - Grupo urbano centro - Facultad de Ciencias Jurídicas y Sociales - Edificio anexo Postgrado

LOCALIDAD: Calle 48 e/ Calle 5 y Calle 6, La Plata. SUPERFICIE DEL TERRENO: 350 m²

24- GBU - Grupo urbano centro - Facultad de Ciencias Jurídicas y Sociales - Edificio Reforma

LOCALIDAD Calle 48 N° 572 – 582 e/ Calle 6 y Calle 7, La Plata SUPERFICIE DEL TERRENO: 2120 m²

25- GBU - Grupo urbano centro - Facultad de Ciencias Médicas - Edificio Anexo

LOCALIDAD: Av. 7 e/ Calle 63 y Calle 64, La Plata. SUPERFICIE DEL TERRENO: 614 m²

26- GBU - Grupo urbano centro - Facultad de Ciencias Naturales - Edificio Anexo

LOCALIDAD: Av. 1 N° 644 e/ Calle 44 y Calle 45, La Plata. SUPERFICIE DEL TERRENO: 349 m². UNIDADES: Facultad de Ciencias Naturales y Museo - Instituto de Geología Aplicada, Anexo casa CIG

27- GBU - Grupo urbano centro - Facultad de Ciencias Naturales - Instituto Spegazzini

LOCALIDAD: Av. 53 N° 477 e/ Calle 4 y Calle 5, La Plata. SUPERFICIE DEL TERRENO: 600 m²

28- GBU – Grupo urbano centro – Facultad de Humanidades – Edificio Anexo – Escuela de Lenguas

LOCALIDAD: Calle 47 N° 879, La Plata. SUPERFICIE DEL TERRENO: 322 m²

29- GBU – Grupo urbano centro – Facultad de Humanidades – Edificio Anexo – PEPAM

LOCALIDAD: Calle 50 N° 1124, La Plata. SUPERFICIE DEL TERRENO: 300 m^2

30- GBU – Grupo urbano centro – Facultad de Periodismo –Edificio Anexo

LOCALIDAD: Av. 44 e/ Calle 8 y Calle 9, La Plata. SUPERFICIE DEL TERRENO: $600\ m^2$

31- GBU - Grupo urbano centro - Facultad de Psicología - Edificio Anexo - Ex CEPAVE

LOCALIDAD: Calle 2 N° 584 e/ Calle 43 y Calle 44, La Plata. SUPERFICIE DEL TERRENO: 604 m²

32- GBU - Grupo urbano centro - Manzana Edificio Plaza Rocha - Facultad de Bellas Artes y Biblioteca Central

LOCALIDAD: Plaza Rocha, Diag. 78, Av. 7, Calle 8 y Calle 61, La Plata. SUPERFICIE DEL TERRENO: 6264 m². UNIDADES: Edificio Plaza Rocha / Biblioteca Central, Facultad de Bellas Artes y Radio Universidad

33- GBU - Grupo urbano centro - Manzana Ex Distrito - Facultades de Bellas artes y Trabajo social y Bachillerato de Bellas Artes

LOCALIDAD: Diag. 78, Calle 9, Calle 10, Calle 62 y Calle 63, La Plata. SUPERFICIE DEL TERRENO: 13270 m². UNIDADES: Bachillerato de Bellas Artes, Edificio Noche de los Lápices, Facultad de Bellas Artes, Edificio Aulario, Edificio Centro de Estudiantes, Edificio EI, EII, EIII, Facultad de Trabajo Social.

34- GBU - Grupo urbano centro - Manzana Liceo V Mercante

LOCALIDAD: Diag. 77, Calle 46, Calle 47, Calle 4 y Calle 5, La Plata. SUPERFICIE DEL TERRENO: 7810 m²

35- GBU – Grupo urbano centro – Manzana Presidencia, Edificio Karakachoff y Facultad de CS Económicas

LOCALIDAD: Av. 7, Calle 6, Calle 47 y Calle 48, La Plata. SUPERFICIE DEL TERRENO: 10.782 m². UNIDADES: Edificio Sergio Karakachoff, Presidencia y Facultades de Económicas, Derecho, Arquitectura y Ciencias Económicas, Presidencia - Edificio Rectorado.

36- GBU – Grupo urbano centro – Presidencia, Edificio Dirección de Servicios Sociales

LOCALIDAD: Av. 53 N° 417 – 419 e/ Calle 3 y Calle 4, La Plata. SUPERFICIE DEL TERRENO: 600 m²

37- GBU – Grupo urbano centro – Presidencia, Edificio Anexo CESPI

LOCALIDAD: Calle 2 N° 1166, La Plata. SUPERFICIE DEL TERRENO: 188 m²

38- GBU - Grupo urbano centro - Presidencia, Edificio de la Editorial

LOCALIDAD: Calle 47 N° 380, La Plata. SUPERFICIE DEL TERRENO: 314 m²

39- GBU – Grupo urbano centro – Presidencia, Edificio Taller de teatro y Coro Universitario

LOCALIDAD: Calle 10 N° 1074, La Plata. SUPERFICIE DEL TERRENO: 600 m^2

40-Facultad de Ciencias Agrarias y Forestales - Establecimiento Don Joaquín

LOCALIDAD: RP 36 y acceso a Gral. Mansilla (Bavio), Magdalena. SUPERFICIE DEL TERRENO: 4260000 m²

41-Facultad de Ciencias Agrarias y Forestales - Establecimiento El Amanecer

LOCALIDAD: RP 36, Vieytes, Magdalena. SUPERFICIE DEL TERRENO: 2550000 m²

42- GBU - Grupo urbano centro - Presidencia, Museo Azzarini

LOCALIDAD: Calle 45 N° 582 e/ Calle 6 y Calle 7, La Plata. SUPERFICIE DEL TERRENO: 400 \mbox{m}^2

43- Reserva del Valle del Arroyo Cuña Pirú

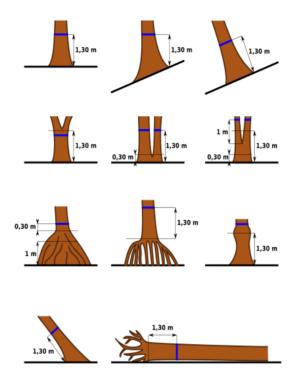
LOCALIDAD: RP 7, Cainguas, Aristóbulo del Valle y Libertador General de San Martín, Garuhapé, Misiones. SUPERFICIE DEL TERRENO: 60340000 m². OBSERVACIONES: La Reserva del Valle del Arroyo Cuña Pirú se encuentra actualmente en trámite de cesión a los pueblos originarios.

Los datos utilizados para realizar el estudio de fijación de CO₂eq incluyen algún margen de error o de incertidumbre vinculado al método de cálculo. Para este trabajo se considera el 0 % de incertidumbre para los datos primarios extraídos de relevamiento total de individuos, 5 % para datos primarios extraídos de relevamiento por medio de parcelas de área conocida y extrapolados al total de la superficie y el 50 % de incertidumbre cuando se

realizó la extrapolación a partir de datos no relevados en este trabajo (Reserva del Valle del Arroyo Cuña Pirú).

4. METODOLOGÍA

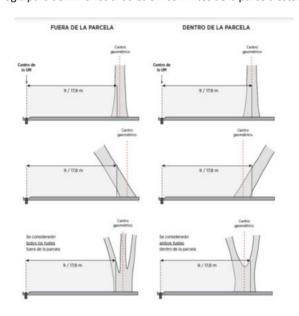
Habiéndose definido los aspectos referidos a límite temporal (Años 2021-2022), límites de la Universidad (dependencias que se encuentran detalladas en la Tabla 1), estamos en condiciones de elaborar el cálculo de la fijación de CO₂eq.


Planificación del Inventario Forestal

La determinación de la cantidad de CO₂eq fijado por árboles o plantaciones, depende de la variable biomasa, la misma debe ser estimada de forma fidedigna mediante un monitoreo de biomasa forestal. Existen metodologías que permiten estimar la biomasa en diferentes compartimentos o partes del árbol y en los reservorios del bosque, convirtiendo estos resultados en cantidades de CO₂eq a través de factores de conversión. Los cambios o flujos de CO₂eq no son medibles directamente, sin embargo, es posible estimar el stock o existencias de CO₂eq en diferentes oportunidades en el tiempo. Así, estos cambios o flujos se estiman por diferencia entre dos mediciones de stock. Las metodologías para la cuantificación y monitoreo de CO₂eq integran diferentes herramientas básicas como ser: el mapeo, el inventario forestal, muestreo de biomasa, las determinaciones de tenores de Carbono y el modelaje matemático. El presente trabajo abordará la realización del inventario forestal, la estimación de biomasa en Kg y el cálculo de CO₂eq fijado en Mg.

La necesidad de realizar un inventario forestal surge por la imposibilidad de medir el total del stock del área total de las dependencias de la UNLP, debiéndose tomar muestras representativas de la población en estudio en algunos casos. Estas muestras son una proporción del área del proyecto, instaladas sobre todo el área a fin de obtener estimaciones de las variables de interés. Las mismas se denominan parcelas de muestreo. Es por esto que se planearon dos métodos de muestreo según las características de la estructura forestal a muestrear. Para estructuras de mayor tamaño y homogeneidad se realizaron parcelas de muestreo para poder extrapolar las mediciones en parcelas a las superficies mayores. Se utilizó principalmente para los predios rurales de la UNLP. Para las estructuras más heterogéneas, en cuanto a distribución de árboles, especies y edades se realizó un relevamiento total, en donde se midieron la totalidad de los árboles. Esta última estructura es característica del arbolado de los predios urbanos de la UNLP.

En el primer caso se realizó el correspondiente trabajo de gabinete, para determinar los límites de estas estructuras homogéneas, su superficie, y los puntos donde se ubicaron al azar las parcelas de muestreo. Todos los árboles vivos, que presentaron un DAP (diámetro a la altura del pecho: diámetro del árbol a 1.3 m) mayor a 10 cm fueron medidos con cinta métrica y se registró la especie. También se le asignó a cada árbol su ubicación mediante el uso de GPS (Global Positioning System): su respectiva latitud, longitud y elevación sobre el nivel del mar (msnm). En los casos en que los árboles presentan bifurcaciones por debajo de 1.3 m se midió el DAP de cada fuste individualmente, asignando un punto GPS a cada uno. Para determinar la altura de la medición, se consideraron las irregularidades de los árboles, como se explica de manera simplificada en la Figura 1.


Figura 1. Métodos de medición del DAP en casos particulares.

Instalación de parcelas de muestreo

Para la instalación de parcelas se cargaron los puntos de muestreo en los GPS y/o las aplicaciones de los teléfonos para su localización en el terreno. Una vez ubicado el centro de la parcela se definió el radio de la parcela circular para que incluyan un mínimo de 20 árboles y un máximo de 30 árboles. Para determinar si los árboles se incluyen o no dentro de la misma, se controló la distancia comprendida entre su centro geométrico y el centro de la parcela (ver Figura 2). Antes de las salidas a campo se verificó que las coordenadas de las parcelas tuviesen cargadas en el GPS y/o en las aplicaciones de los teléfonos; la cantidad de agua y comida necesaria para pasar el día en el campo; equipo de primeros auxilios, el calendario de vacunas y la presencia de todos los instrumentales para cada grupo necesarios para la instalación de las parcelas y para la medición de los árboles: GPS; cinta métrica de 15 m; cinta métrica para mediciones de perímetros a 1,3 m de altura; planillas de papel; bolígrafo/lápiz; mapas; pilas AA de repuesto y chapas de aluminio con numeración correlativa, clavos y martillo para la futura remedición de las parcelas.

Figura 2. Metodología para definir si los árboles en los límites de la parcela están dentro o fuera de la misma.

Cada integrante del equipo de medición se responsabilizó, durante todo el día, por sus instrumentales de medición, haciendo una revisión de los mismos al terminar la jornada de trabajo para asegurarse de que todo el instrumental estuviera completo y en perfecto estado. Antes de la primera salida al campo, cada integrante del equipo definió a qué punto de su cuerpo correspondía la altura de 1.30 metros (altura a la cual se mide el DAP diámetro a la altura del pecho), repitiendo dicha actividad cuando lo consideraba necesario. Para el caso de líneas de plantación, la parcela consistió en la medición de una línea completa o una distancia la cual incluye de 20 a 30 árboles.

Parcelas Instaladas

En la Tabla 2 se observan los inmuebles rurales según dependencia, la cantidad de parcelas de muestreo y las líneas de plantación realizadas en cada uno. Los inmuebles que presentan valores de área corresponden a parcelas de muestreo y los que presentan longitud a líneas de plantación.

Tabla 2. Parcelas y líneas de muestreo instaladas por dependencia.

Dependencia	A/L	Polìgono	N° Parcela	Área (m²)	Longitud (m
01-Colegio Agropecuario Inchausti	PA	CAIT	CAI	153.9	
02- Campo "6 de Agosto"	PA	TT6_A	T1	153.9	
	PA	TT6_A	T2	153.9	
03- Estación Experimental J. Hirschhörn	PA	EJH_A	1	254.5	
	PA	EJH_A	2	254.5	
	PA	EJH_B	3	254.5	
	PA	EJH_B	4	254.5	
	PA	EJH_B	5	254.5	
	PA	EJH_B	6	254.5	
	PA	EJH_C	7	254.5	
	PA	EJH_D	8	254.5	
	PA	EJH_E	190	254.5	
	PA	EJH_F	198	254.5	
	PA	EJH_G	230	254.5	
	PA	EJH_H	265	254.5	
	PA	EJH_I	344	254.5	
	PA	EJH_I	375	254.5	
	PA	EJH_J	388	254.5	
	PA	EJH_K	216	207.0	
	PA	EJH_L	219	120.4	
07- Santa Catalina	PA	SC_A	21	254.5	
	PA	SC_A	27	254.5	
	PA	SC_A	31	254.5	
10- Museo y Finca "Samay Huasi"	PA	SH_A	Parcela SH1	706.9	
	PA	SH_A	Parcela SH2	706.9	
	PL	Vitis	Parcela SH3		78.6

40- Establecimiento Don Joaquín	PL	DJ_LINEA1	DJ_LINEA1		21.98
	PL	DJ_LINEA2	DJ_LINEA2		108.6
41- Establecimiento El Amanecer	PA	EEA_A	407	254.5	
	PA	EEA_A	415	254.5	
	PA	EEA_B	420	254.5	
	PA	EEA_C	437	254.5	
	PA	EEA_C	452	254.5	
	PA	EEA_D	465	254.5	

PA: Parcela circular de área fija, PL: Parcela linear.

Determinación del crecimiento

Para el cálculo del crecimiento anual en diámetro de las especies presentes en las dependencias de la UNLP, se utilizó la base de datos del inventario forestal del Paseo del Bosque de la ciudad de La Plata, correspondientes a los años 2004, 2005 y 2006. El Paseo del Bosque es el mayor espacio verde de la ciudad y fue fundado el 5 de junio de 1882, tiene una extensión aproximada de 60 hectáreas y cuenta con más de cien especies diferentes de árboles. Se realizó la medición del DAP actual (2022) y la geolocalización de 430 árboles, correspondientes a 83 especies. Se realizó la resta entre las mediciones y la división por el número de años entre las mediciones. Se promediaron los datos por especie para obtener el dato de crecimiento anual en DAP.

Análisis de datos

Se unificaron todos los datos mencionados anteriormente (Fecha, Dependencia de la UNLP, Punto GPS, Nombre científico, Familia botánica, DAP en cm, Latitud en grados y decimales de grados, Longitud en grados y decimales de grados y Elevación en msnm) en una única planilla de cálculo para todas las dependencias. Se analizó la base de datos en busca de discordancias y estas se corrigieron; de la misma manera se corroboró que se utilizará siempre el mismo nombre para la misma especie. Se utilizó la metodología recomendada por la Convención Marco de las Naciones Unidas sobre el Cambio Climático (UNFCCC) para el cálculo del Carbono fijado. Los valores utilizados para los distintos parámetros de conversión de Biomasa a Dióxido de Carbono fueron extraídos del documento Orientación del IPCC sobre las buenas prácticas para UTCUTS y del Mecanismo de Desarrollo Limpio (AR-TOOL14 Methodological tool: Estimation of carbon stocks and change in carbon stocks of trees and shrubs in A/R CDM project activities Version 04.2), que fueron: relación parte aérea/raíces (0.2), fracción Carbono (0.47) y relación CO₂/Carbono (3.6667), utilizados en los cálculos del presente trabajo.

Se realizó una búsqueda bibliográfica de modelos de biomasa para cada especie, con el fin de aplicar ese modelo y lograr el cálculo de Kg de biomasa aérea para cada árbol. El uso de modelos de regresión alométrica es un paso crucial en la estimación de la biomasa forestal (Chave et al., 2005), siendo el método no destructivo más utilizado (Vashum y Jayakumar, 2012). Las ecuaciones alométricas se desarrollan estableciendo una relación entre los diferentes parámetros físicos del árbol, como el DAP, la altura del árbol, la altura del tallo, el diámetro de la copa, etc. Estas ecuaciones se desarrollan para una sola especie o para una mezcla de especies a fin de proporcionar la biomasa para sitios específicos y hacer comparaciones en una escala regional o mayor (Vashum y Jayakumar, 2012). De no contar con modelos específicos, se utilizaron modelos generales para el género, familia o región fitogeográfica. En la Tabla 3 se presentan los modelos seleccionados por especie.

Tabla 3. Selección de los modelos de biomasa aérea por especie forestal.

Familia	Especie	Modelo Alometrico	Cita/Fuente
Aceraceae	Acer japonicum	AGB=EXP(-2.047+2.3852*LN(DAP))	Chojnacky et al. 2014
	Acer negundo	AGB=EXP(-2.047+2.3852*LN(DAP))	Chojnacky et al. 2014
	Acer palmatum	AGB=EXP(-2.047+2.3852*LN(DAP))	Chojnacky et al. 2014
	Acer pseudoplatanus	AGB=EXP(-2.047+2.3852*LN(DAP))	Chojnacky et al. 2014
	Acer sacharinum	AGB=EXP(-2.047+2.3852*LN(DAP))	Chojnacky et al. 2014
	Acer triflorum	AGB=EXP(-2.047+2.3852*LN(DAP))	Chojnacky et al. 2014
Anacardiaceae	Cotinus coggygria	AGB=EXP(-1.996+2.32*LN(DAP))	Brown et al. 1989
	Lithraea molleoides	AGB=EXP(-1.996+2.32*LN(DAP))	Brown et al. 1989
	Schinopsis lorentzii	AGB=EXP(-1.996+2.32*LN(DAP))	Brown et al. 1989
	Schinus areira	AGB=EXP(-1.996+2.32*LN(DAP))	Brown et al. 1989
	Schinus terebinthifolia	AGB=EXP(-1.996+2.32*LN(DAP))	Brown et al. 1989
Annonaceae	Annona cherimola	AGB=EXP(-3.355+2.578*LN(DAP))	Nogueira et al. 2008
	Rollinia emarginata	AGB=EXP(-3.355+2.578*LN(DAP))	Nogueira et al. 2008
Apocinaceae	Aspidosperma australe	AGB=EXP(-3.355+2.578*LN(DAP))	Nogueira et al. 2008
	Nerium oleander	AGB=EXP(-3.355+2.578*LN(DAP))	Nogueira et al. 2008
Aquifoliaceae	llex aquifolium	AGB=0.1245*DAP^2.4163	Hung et al. 2012
Araceae	Monstera deliciosa	AGB=EXP(-1.996+2.32*LN(DAP))	Brown et al. 1989

	Philodendron bipinnatifidum	AGB=EXP(-1.996+2.32*LN(DAP))	Brown et al. 1989
Araliaceae	Dizygotheca elegantissima	AGB=0.1245*DAP^2.4163	Hung et al. 2012
	Schefflera arboricola	AGB=0.1245*DAP^2.4163	Hung et al. 2012
Araucariaceae	Araucaria angustifolia	AGB=EXP(-3.0506+2.6465*LN(DAP))	Chojnacky et al. 2014
, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,	Araucaria araucana	AGB=EXP(-3.0506+2.6465*LN(DAP))	Chojnacky et al. 2014
	Araucaria bidwilii	AGB=EXP(-3.0506+2.6465*LN(DAP))	Chojnacky et al. 2014
Arecaceae	Butia capitata	AGB=EXP(-1.996+2.32*LN(DAP))	Brown et al. 1989
	Butia yatay	AGB=EXP(-1.996+2.32*LN(DAP))	Brown et al. 1989
	Chamaerops humilis	AGB=EXP(-1.996+2.32*LN(DAP))	Brown et al. 1989
	Copernicia alba	AGB=EXP(-1.996+2.32*LN(DAP))	Brown et al. 1989
	Livistona chinensis	AGB=EXP(-1.996+2.32*LN(DAP))	Brown et al. 1989
	Phoenix canariensis	AGB=EXP(-1.996+2.32*LN(DAP))	Brown et al. 1989
	Syagrus romanzoffiana	AGB=EXP(-1.996+2.32*LN(DAP))	Brown et al. 1989
	Trachycarpus fortunei	AGB=EXP(-1.996+2.32*LN(DAP))	Brown et al. 1989
	Washingtonia filifera	AGB=EXP(-1.996+2.32*LN(DAP))	Brown et al. 1989
	Washingtonia robusta	AGB=EXP(-1.996+2.32*LN(DAP))	Brown et al. 1989
Asparagaceae	Beaucarnea gracilis	AGB=EXP(-1.996+2.32*LN(DAP))	Brown et al. 1989
	Cordyline australis	AGB=EXP(-1.996+2.32*LN(DAP))	Brown et al. 1989
	Dracaena fragrans	AGB=EXP(-1.996+2.32*LN(DAP))	Brown et al. 1989
	Yucca elephantipes	AGB=0.1245*DAP^2.4163	Hung et al. 2012
Asteraceae	Quechualia-fulta	AGB=0.1245*DAP^2.4163	Hung et al. 2012
Bignoniaceae	Catalpa bignonioides	AGB=0.1959*DAP^2.1206	Sáenz et al. 2021
	Handroanthus albus	AGB=0.1959*DAP^2.1206	Sáenz et al. 2021 Sáenz et al. 2021
	Handroanthus impetiginosus	AGB=0.1959*DAP^2.1206 AGB=0.1959*DAP^2.1206	
	Handroanthus impetiginosus Jacaranda mimosifolia	AGB=0.1959*DAP^2.1206 AGB=0.1959*DAP^2.1206	Sáenz et al. 2021 Sáenz et al. 2021
	Pyrostegia venusta	AGB=0.1959*DAP^2.1206 AGB=0.1959*DAP^2.1206	Sáenz et al. 2021
	Tecoma stans	AGB=0.1959*DAP^2.1206	Sáenz et al. 2021
Boraginaceae	Cordia alliodora	AGB=0.1245*DAP^2.1200	Hung et al. 2012
Boraginaceae	Cordia americana	AGB=0.1245*DAP^2.4163	Hung et al. 2012
Doruginaceae	Saccelium lanceolatum	AGB=0.1245*DAP^2.4163	Hung et al. 2012
Brasicaceae	Guaiacum officinale	AGB=0.1245*DAP^2.4163	Hung et al. 2012
Вихасеае	Buxus sempervirens	AGB=0.1245*DAP^2.4163	Hung et al. 2012
Cactaceae	Cereus stenogonus	AGB=EXP(-3.355+2.578*LN(DAP))	Nogueira et al. 2008
Cuctuccuc	Echinopsis atacamensis	AGB=0.1245*DAP^2.4163	Hung et al. 2012
	Opuntia ficus-indica	AGB=0.1245*DAP^2.4163	Hung et al. 2012
Cannabaceae	Celtis australis	AGB=0.1245*DAP^2.4163	Hung et al. 2012
	Celtis ehrenbergiana	AGB=0.1245*DAP^2.4163	Hung et al. 2012
	Celtis occidentalis	AGB=0.1245*DAP^2.4163	Hung et al. 2012
Capparaceae	Capparis atamisquea	AGB=0.1245*DAP^2.4163	Hung et al. 2012
Cardiopteridaceae	Citronella mucronata	AGB=0.1245*DAP^2.4163	Hung et al. 2012
Caricaceae	Carica papaya	AGB=0.1245*DAP^2.4163	Hung et al. 2012
Casuarinaceae	Casuarina cunninghamiana	AGB=0.1245*DAP^2.4163	Hung et al. 2012
Celastraceae	Monteverdia ilicifolia	AGB=0.1245*DAP^2.4163	Hung et al. 2012
Cephalotaxaceae	Cephalotaxus fortunei	AGB=EXP(-2.6327+2.4757*LN(DAP))	Chojnacky et al. 2014
Corynocarpaceae	Corynocarpus laevigatus	AGB=0.1245*DAP^2.4163	Hung et al. 2012
Cupressaceae	Calocedrus decurrens	AGB=EXP(-2.6327+2.4757*LN(DAP))	Chojnacky et al. 2014
•	Chamaencyparis nootkatensis	AGB=EXP(-2.6327+2.4757*LN(DAP))	Chojnacky et al. 2014
	Cupressus arizonica	AGB=EXP(-2.6327+2.4757*LN(DAP))	Chojnacky et al. 2014
	Cupressus lusitanica	AGB=EXP(-2.6327+2.4757*LN(DAP))	Chojnacky et al. 2014
	Cupressus macrocarpa	AGB=EXP(-2.6327+2.4757*LN(DAP))	Chojnacky et al. 2014
	Cupressus sempervirens	AGB=EXP(-2.6327+2.4757*LN(DAP))	Chojnacky et al. 2014
	Cupressus sempervirens var stricta	AGB=EXP(-2.6327+2.4757*LN(DAP))	Chojnacky et al. 2014
	Juniperus virginiana	AGB=EXP(-2.6327+2.4757*LN(DAP))	Chojnacky et al. 2014
	Sequoiadendron giganteum	AGB=EXP(-2.6327+2.4757*LN(DAP))	Chojnacky et al. 2014
	Thuja occidentalis	AGB=EXP(-2.6327+2.4757*LN(DAP))	Chojnacky et al. 2014
	Thuja orientalis	AGB=EXP(-2.6327+2.4757*LN(DAP))	Chojnacky et al. 2014
Cycadaceae	Cycas revoluta	AGB=EXP(-1.996+2.32*LN(DAP))	Brown et al. 1989
Esterculiaceae	Firmiana platanifolia	AGB=0.1245*DAP^2.4163	Hung et al. 2012
Euphorbiaceae	Cnidoscolus multilobus	AGB=0.1245*DAP^2.4163	Hung et al. 2012
	Euphorbia grandicornis	AGB=0.1245*DAP^2.4163	Hung et al. 2012
	Sapium haematospermum	AGB=0.1245*DAP^2.4163	Hung et al. 2012
	Sebastiania brasiliensis	AGB=0.1245*DAP^2.4163	Hung et al. 2012
- ·	Sebastiania commersoniana	AGB=0.1245*DAP^2.4163	Hung et al. 2012
Fabaceae	Acacia melanoxylon	AGB=0.1245*DAP^2.4163	Hung et al. 2012
	Acacia retinodes	AGB=0.1245*DAP^2.4163	Hung et al. 2012
	Acacia salicina	AGB=0.1245*DAP^2.4163	Hung et al. 2012
	Albizia julibrissin	AGB=0.1245*DAP^2.4163	Hung et al. 2012

	Anadenanthera colubrina	AGB=0.1245*DAP^2.4163	Hung et al. 2012
	Bauhinia forficata	AGB=EXP(-2.5095+2.5437*LN(DAP))	Chojnacky et al. 2014
	Ceratonia siliqua	AGB=EXP(-2.5095+2.5437*LN(DAP))	Chojnacky et al. 2014
	Cercis siliquastrum	AGB=EXP(-2.5095+2.5437*LN(DAP))	Chojnacky et al. 2014
	Enterolobium contortisiliquum	AGB=EXP(-2.9255+2.4109*LN(DAP))	Chojnacky et al. 2014
	Erythrina crista-galli	AGB=EXP(-2.9255+2.4109*LN(DAP))	Chojnacky et al. 2014
	Geoffroea decorticans	AGB=EXP(-2.9255+2.4109*LN(DAP))	Chojnacky et al. 2014
	Gleditsia amorphoides	AGB=EXP(-2.9255+2.4109*LN(DAP))	Chojnacky et al. 2014
	Gleditsia triacanthos	AGB=EXP(-2.9255+2.4109*LN(DAP))	Chojnacky et al. 2014 Chojnacky et al. 2014
		, , , , , , , , , , , , , , , , , , , ,	
	Leucaena leucocephala	AGB=EXP(-2.9255+2.4109*LN(DAP))	Chojnacky et al. 2014
	Myroxylon balsamum	AGB=EXP(-2.9255+2.4109*LN(DAP))	Chojnacky et al. 2014
	Neltuma alba	AGB=EXP(-2.9255+2.4109*LN(DAP))	Chojnacky et al. 2014
	Neltuma caldenia	AGB=EXP(-2.9255+2.4109*LN(DAP))	Chojnacky et al. 2014
	Neltuma nigra	AGB=EXP(-2.9255+2.4109*LN(DAP))	Chojnacky et al. 2014
	Parapiptadenia excelsa	AGB=EXP(-2.9255+2.4109*LN(DAP))	Chojnacky et al. 2014
	Parapiptadenia rigida	AGB=EXP(-2.9255+2.4109*LN(DAP))	Chojnacky et al. 2014
	Parkinsonia aculeata	AGB=EXP(-2.9255+2.4109*LN(DAP))	Chojnacky et al. 2014
	Peltophorum dubium	AGB=EXP(-2.9255+2.4109*LN(DAP))	Chojnacky et al. 2014
	Pterogyne nitens	AGB=EXP(-2.9255+2.4109*LN(DAP))	Chojnacky et al. 2014
	Robinia pseudoacacia	AGB=EXP(-2.9255+2.4109*LN(DAP))	Chojnacky et al. 2014
	Senegalia praecox	AGB=EXP(-2.9255+2.4109*LN(DAP))	Chojnacky et al. 2014
	Senna spectabilis	AGB=EXP(-2.9255+2.4109*LN(DAP))	Chojnacky et al. 2014
	•	AGB=EXP(-2.9255+2.4109*LN(DAP))	Chojnacky et al. 2014 Chojnacky et al. 2014
	Styphnolobium japonicum	, , , , , , , , , , , , , , , , , , , ,	
	Styphnolobium japonicum var. pendula	AGB=EXP(-2.9255+2.4109*LN(DAP))	Chojnacky et al. 2014
	Tipuana tipu	AGB=EXP(-1.996+2.32*LN(DAP))	Brown et al. 1989
	Vachellia aroma	AGB=EXP(-1.08914+1.98658*LN(DAP))	Lucero et al. 2018
	Vachellia caven	AGB=EXP(-1.08914+1.98658*LN(DAP))	Lucero et al. 2018
	Wisteria sinensis	AGB=0.1245*DAP^2.4163	Hung et al. 2012
Fagaceae	Castanea sativa	AGB=EXP(-3.0304+2.4982*LN(DAP))	Chojnacky et al. 2014
	Fagus sylvatica	AGB=EXP(-3.0304+2.4982*LN(DAP))	Chojnacky et al. 2014
	Quercus ilex	AGB=EXP(-2.2198+2.441*LN(DAP))	Chojnacky et al. 2014
	Quercus palustris	AGB=EXP(-2.0314+2.3524*LN(DAP))	Chojnacky et al. 2014
	Quercus robur	AGB=EXP(-2.0314+2.3524*LN(DAP))	Chojnacky et al. 2014
	Quercus rubra	AGB=EXP(-2.0314+2.3524*LN(DAP))	Chojnacky et al. 2014
	Quercus suber	AGB=EXP(-2.2198+2.441*LN(DAP))	Chojnacky et al. 2014
Ginkgoaceae	Ginkgo biloba	AGB=0.1245*DAP^2.4163	Hung et al. 2012
Hamamelidaceae	Liquidambar styraciflua	AGB=EXP(-2.639+2.5466*LN(DAP))	
			Chojnacky et al. 2014
Juglandaceae	Carya illinoinensis	AGB=EXP(-2.5095+2.6175*LN(DAP))	Chojnacky et al. 2014
		AGB=EXP(-2.5095+2.6175*LN(DAP))	Chojnacky et al. 2014
	Juglans australis	, , , , , , , , , , , , , , , , , , , ,	
	Juglans regia	AGB=EXP(-2.5095+2.6175*LN(DAP))	Chojnacky et al. 2014
Lauraceae	Juglans regia Cinnamomum camphora	AGB=EXP(-2.5095+2.6175*LN(DAP)) AGB=EXP(-2.2118+2.4133*LN(DAP))	Chojnacky et al. 2014 Chojnacky et al. 2014
Lauraceae	Juglans regia	AGB=EXP(-2.5095+2.6175*LN(DAP)) AGB=EXP(-2.2118+2.4133*LN(DAP)) AGB=EXP(-2.2118+2.4133*LN(DAP))	Chojnacky et al. 2014
Lauraceae	Juglans regia Cinnamomum camphora	AGB=EXP(-2.5095+2.6175*LN(DAP)) AGB=EXP(-2.2118+2.4133*LN(DAP))	Chojnacky et al. 2014 Chojnacky et al. 2014
Lauraceae	Juglans regia Cinnamomum camphora Cinnamomum glanduliferum	AGB=EXP(-2.5095+2.6175*LN(DAP)) AGB=EXP(-2.2118+2.4133*LN(DAP)) AGB=EXP(-2.2118+2.4133*LN(DAP))	Chojnacky et al. 2014 Chojnacky et al. 2014 Chojnacky et al. 2014
Lauraceae	Juglans regia Cinnamomum camphora Cinnamomum glanduliferum Cinnamomum iners	AGB=EXP(-2.5095+2.6175*LN(DAP)) AGB=EXP(-2.2118+2.4133*LN(DAP)) AGB=EXP(-2.2118+2.4133*LN(DAP)) AGB=EXP(-2.2118+2.4133*LN(DAP))	Chojnacky et al. 2014
Lauraceae	Juglans regia Cinnamomum camphora Cinnamomum glanduliferum Cinnamomum iners Laurus nobilis	AGB=EXP(-2.5095+2.6175*LN(DAP)) AGB=EXP(-2.2118+2.4133*LN(DAP)) AGB=EXP(-2.2118+2.4133*LN(DAP)) AGB=EXP(-2.2118+2.4133*LN(DAP)) AGB=EXP(-2.2118+2.4133*LN(DAP)) AGB=EXP(-2.2118+2.4133*LN(DAP))	Chojnacky et al. 2014
Lauraceae	Juglans regia Cinnamomum camphora Cinnamomum glanduliferum Cinnamomum iners Laurus nobilis Nectandra angustifolia Nectandra lanceolata	AGB=EXP(-2.5095+2.6175*LN(DAP)) AGB=EXP(-2.2118+2.4133*LN(DAP)) AGB=EXP(-2.2118+2.4133*LN(DAP)) AGB=EXP(-2.2118+2.4133*LN(DAP)) AGB=EXP(-2.2118+2.4133*LN(DAP)) AGB=EXP(-2.2118+2.4133*LN(DAP)) AGB=EXP(-2.2118+2.4133*LN(DAP))	Chojnacky et al. 2014
Lauraceae	Juglans regia Cinnamomum camphora Cinnamomum glanduliferum Cinnamomum iners Laurus nobilis Nectandra angustifolia Nectandra lanceolata Ocotea acutifolia	AGB=EXP(-2.5095+2.6175*LN(DAP)) AGB=EXP(-2.2118+2.4133*LN(DAP)) AGB=EXP(-2.2118+2.4133*LN(DAP)) AGB=EXP(-2.2118+2.4133*LN(DAP)) AGB=EXP(-2.2118+2.4133*LN(DAP)) AGB=EXP(-2.2118+2.4133*LN(DAP)) AGB=EXP(-2.2118+2.4133*LN(DAP)) AGB=EXP(-2.2118+2.4133*LN(DAP)) AGB=EXP(-2.2118+2.4133*LN(DAP))	Chojnacky et al. 2014
Lauraceae	Juglans regia Cinnamomum camphora Cinnamomum glanduliferum Cinnamomum iners Laurus nobilis Nectandra angustifolia Nectandra lanceolata Ocotea acutifolia Ocotea puberula	AGB=EXP(-2.5095+2.6175*LN(DAP)) AGB=EXP(-2.2118+2.4133*LN(DAP)) AGB=EXP(-2.2118+2.4133*LN(DAP)) AGB=EXP(-2.2118+2.4133*LN(DAP)) AGB=EXP(-2.2118+2.4133*LN(DAP)) AGB=EXP(-2.2118+2.4133*LN(DAP)) AGB=EXP(-2.2118+2.4133*LN(DAP)) AGB=EXP(-2.2118+2.4133*LN(DAP)) AGB=EXP(-2.2118+2.4133*LN(DAP)) AGB=EXP(-2.2118+2.4133*LN(DAP))	Chojnacky et al. 2014
	Juglans regia Cinnamomum camphora Cinnamomum glanduliferum Cinnamomum iners Laurus nobilis Nectandra angustifolia Nectandra lanceolata Ocotea acutifolia Ocotea puberula Persea americana	AGB=EXP(-2.5095+2.6175*LN(DAP)) AGB=EXP(-2.2118+2.4133*LN(DAP))	Chojnacky et al. 2014
Loganiaceae	Juglans regia Cinnamomum camphora Cinnamomum glanduliferum Cinnamomum iners Laurus nobilis Nectandra angustifolia Nectandra lanceolata Ocotea acutifolia Ocotea puberula Persea americana Strychnos brasiliensis	AGB=EXP(-2.5095+2.6175*LN(DAP)) AGB=EXP(-2.2118+2.4133*LN(DAP)) AGB=0.1245*DAP^2.4163	Chojnacky et al. 2014 Hung et al. 2012
Loganiaceae Lythraceae	Juglans regia Cinnamomum camphora Cinnamomum glanduliferum Cinnamomum iners Laurus nobilis Nectandra angustifolia Nectandra lanceolata Ocotea acutifolia Ocotea puberula Persea americana Strychnos brasiliensis Lagerstroemia indica	AGB=EXP(-2.5095+2.6175*LN(DAP)) AGB=EXP(-2.2118+2.4133*LN(DAP)) AGB=CXP(-2.2118+2.4133*LN(DAP)) AGB=0.1245*DAP^2.4163	Chojnacky et al. 2014 Hung et al. 2012 Hung et al. 2012
Loganiaceae	Juglans regia Cinnamomum camphora Cinnamomum glanduliferum Cinnamomum iners Laurus nobilis Nectandra angustifolia Nectandra lanceolata Ocotea acutifolia Ocotea puberula Persea americana Strychnos brasiliensis Lagerstroemia indica Liriodendron tulipifera	AGB=EXP(-2.5095+2.6175*LN(DAP)) AGB=EXP(-2.2118+2.4133*LN(DAP)) AGB=CXP(-2.2118+2.4133*LN(DAP)) AGB=0.1245*DAP^2.4163 AGB=CXP(-2.5497+2.5011*LN(DAP))	Chojnacky et al. 2014 Hung et al. 2012 Hung et al. 2012 Chojnacky et al. 2014
Loganiaceae Lythraceae	Juglans regia Cinnamomum camphora Cinnamomum glanduliferum Cinnamomum iners Laurus nobilis Nectandra angustifolia Nectandra lanceolata Ocotea acutifolia Ocotea puberula Persea americana Strychnos brasiliensis Lagerstroemia indica Liriodendron tulipifera Magnolia × soulangeana	AGB=EXP(-2.5095+2.6175*LN(DAP)) AGB=EXP(-2.2118+2.4133*LN(DAP)) AGB=0.1245*DAP^2.4163 AGB=0.1245*DAP^2.4163 AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP))	Chojnacky et al. 2014 Hung et al. 2012 Hung et al. 2012 Chojnacky et al. 2014 Chojnacky et al. 2014
Loganiaceae Lythraceae	Juglans regia Cinnamomum camphora Cinnamomum glanduliferum Cinnamomum iners Laurus nobilis Nectandra angustifolia Nectandra lanceolata Ocotea acutifolia Ocotea puberula Persea americana Strychnos brasiliensis Lagerstroemia indica Liriodendron tulipifera Magnolia × soulangeana Magnolia grandiflora	AGB=EXP(-2.5095+2.6175*LN(DAP)) AGB=EXP(-2.2118+2.4133*LN(DAP)) AGB=0.1245*DAP^2.4163 AGB=0.1245*DAP^2.4163 AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP))	Chojnacky et al. 2014 Hung et al. 2012 Hung et al. 2012 Chojnacky et al. 2014 Chojnacky et al. 2014 Chojnacky et al. 2014 Chojnacky et al. 2014
Loganiaceae Lythraceae	Juglans regia Cinnamomum camphora Cinnamomum glanduliferum Cinnamomum iners Laurus nobilis Nectandra angustifolia Nectandra lanceolata Ocotea acutifolia Ocotea puberula Persea americana Strychnos brasiliensis Lagerstroemia indica Liriodendron tulipifera Magnolia × soulangeana Magnolia liliiflora	AGB=EXP(-2.5095+2.6175*LN(DAP)) AGB=EXP(-2.2118+2.4133*LN(DAP)) AGB=0.1245*DAP^2.4163 AGB=0.1245*DAP^2.4163 AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP))	Chojnacky et al. 2014 Hung et al. 2012 Hung et al. 2012 Chojnacky et al. 2014 Chojnacky et al. 2014
Loganiaceae Lythraceae	Juglans regia Cinnamomum camphora Cinnamomum glanduliferum Cinnamomum iners Laurus nobilis Nectandra angustifolia Nectandra lanceolata Ocotea acutifolia Ocotea puberula Persea americana Strychnos brasiliensis Lagerstroemia indica Liriodendron tulipifera Magnolia × soulangeana Magnolia grandiflora	AGB=EXP(-2.5095+2.6175*LN(DAP)) AGB=EXP(-2.2118+2.4133*LN(DAP)) AGB=0.1245*DAP^2.4163 AGB=0.1245*DAP^2.4163 AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP))	Chojnacky et al. 2014 Hung et al. 2012 Hung et al. 2012 Chojnacky et al. 2014 Chojnacky et al. 2014 Chojnacky et al. 2014 Chojnacky et al. 2014
Loganiaceae Lythraceae	Juglans regia Cinnamomum camphora Cinnamomum glanduliferum Cinnamomum iners Laurus nobilis Nectandra angustifolia Nectandra lanceolata Ocotea acutifolia Ocotea puberula Persea americana Strychnos brasiliensis Lagerstroemia indica Liriodendron tulipifera Magnolia × soulangeana Magnolia liliiflora	AGB=EXP(-2.5095+2.6175*LN(DAP)) AGB=EXP(-2.2118+2.4133*LN(DAP)) AGB=0.1245*DAP^2.4163 AGB=0.1245*DAP^2.4163 AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP))	Chojnacky et al. 2014 Hung et al. 2012 Hung et al. 2012 Chojnacky et al. 2014
Loganiaceae Lythraceae Magnoliaceae	Juglans regia Cinnamomum camphora Cinnamomum glanduliferum Cinnamomum iners Laurus nobilis Nectandra angustifolia Nectandra lanceolata Ocotea acutifolia Ocotea puberula Persea americana Strychnos brasiliensis Lagerstroemia indica Liriodendron tulipifera Magnolia x soulangeana Magnolia grandiflora Magnolia stellata	AGB=EXP(-2.5095+2.6175*LN(DAP)) AGB=EXP(-2.2118+2.4133*LN(DAP)) AGB=0.1245*DAP^2.4163 AGB=0.1245*DAP^2.4163 AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP))	Chojnacky et al. 2014 Hung et al. 2012 Hung et al. 2012 Chojnacky et al. 2014
Loganiaceae Lythraceae Magnoliaceae	Juglans regia Cinnamomum camphora Cinnamomum glanduliferum Cinnamomum iners Laurus nobilis Nectandra angustifolia Nectandra lanceolata Ocotea acutifolia Ocotea puberula Persea americana Strychnos brasiliensis Lagerstroemia indica Liriodendron tulipifera Magnolia x soulangeana Magnolia grandiflora Magnolia stellata Brachychiton populneus	AGB=EXP(-2.5095+2.6175*LN(DAP)) AGB=EXP(-2.2118+2.4133*LN(DAP)) AGB=0.1245*DAP^2.4163 AGB=0.1245*DAP^2.4163 AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP))	Chojnacky et al. 2014 Hung et al. 2012 Hung et al. 2012 Chojnacky et al. 2014 Hung et al. 2014
Loganiaceae Lythraceae Magnoliaceae	Juglans regia Cinnamomum camphora Cinnamomum glanduliferum Cinnamomum iners Laurus nobilis Nectandra angustifolia Nectandra lanceolata Ocotea acutifolia Ocotea puberula Persea americana Strychnos brasiliensis Lagerstroemia indica Liriodendron tulipifera Magnolia x soulangeana Magnolia grandiflora Magnolia stellata Brachychiton populneus Ceiba speciosa	AGB=EXP(-2.5095+2.6175*LN(DAP)) AGB=EXP(-2.2118+2.4133*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=C.1245*DAP^2.4163 AGB=0.1245*DAP^2.4163 AGB=0.1245*DAP^2.4163	Chojnacky et al. 2014 Hung et al. 2012 Hung et al. 2012 Chojnacky et al. 2014 Hung et al. 2012 Hung et al. 2012 Hung et al. 2012
Loganiaceae Lythraceae Magnoliaceae	Juglans regia Cinnamomum camphora Cinnamomum glanduliferum Cinnamomum iners Laurus nobilis Nectandra angustifolia Nectandra lanceolata Ocotea acutifolia Ocotea puberula Persea americana Strychnos brasiliensis Lagerstroemia indica Liriodendron tulipifera Magnolia x soulangeana Magnolia grandiflora Magnolia stellata Brachychiton populneus Ceiba speciosa Luehea divaricata	AGB=EXP(-2.5095+2.6175*LN(DAP)) AGB=EXP(-2.2118+2.4133*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=C.1245*DAP^2.4163 AGB=0.1245*DAP^2.4163 AGB=0.1245*DAP^2.4163 AGB=0.1245*DAP^2.4163	Chojnacky et al. 2014 Hung et al. 2012 Hung et al. 2012 Chojnacky et al. 2014 Hung et al. 2012
Loganiaceae Lythraceae Magnoliaceae	Juglans regia Cinnamomum camphora Cinnamomum glanduliferum Cinnamomum iners Laurus nobilis Nectandra angustifolia Nectandra lanceolata Ocotea acutifolia Ocotea puberula Persea americana Strychnos brasiliensis Lagerstroemia indica Liriodendron tulipifera Magnolia × soulangeana Magnolia iliiiflora Magnolia stellata Brachychiton populneus Ceiba speciosa Luehea divaricata Tilia viridis ssp. ×moltkei	AGB=EXP(-2.5095+2.6175*LN(DAP)) AGB=EXP(-2.2118+2.4133*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=CXP(-2.5497+2.5011*LN(DAP)) AGB=CXP(-2.5497+2.5011*LN(DAP)) AGB=CXP(-2.5497+2.5011*LN(DAP)) AGB=0.1245*DAP^2.4163 AGB=0.1245*DAP^2.4163 AGB=0.1245*DAP^2.4163 AGB=0.1245*DAP^2.4163 AGB=0.1245*DAP^2.4163 AGB=0.1245*DAP^2.4163 AGB=0.048454*DAP^2.58164	Chojnacky et al. 2014 Hung et al. 2012 Hung et al. 2012 Chojnacky et al. 2014 Lhung et al. 2012 Hung et al. 2012 Hung et al. 2012 Hung et al. 2012 Hung et al. 2012 Rodríguez et al. 2008
Loganiaceae Lythraceae Magnoliaceae	Juglans regia Cinnamomum camphora Cinnamomum glanduliferum Cinnamomum iners Laurus nobilis Nectandra angustifolia Nectandra lanceolata Ocotea acutifolia Ocotea puberula Persea americana Strychnos brasiliensis Lagerstroemia indica Liriodendron tulipifera Magnolia × soulangeana Magnolia grandiflora Magnolia ililiflora Magnolia stellata Brachychiton populneus Ceiba speciosa Luehea divaricata Tilia viridis ssp. ×moltkei Cedrela lilloi	AGB=EXP(-2.5095+2.6175*LN(DAP)) AGB=EXP(-2.2118+2.4133*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=CXP(-2.5497+2.5011*LN(DAP)) AGB=CXP(-2.5497+2.5011*LN(DAP)) AGB=CXP(-2.5497+2.4163 AGB=0.1245*DAP^2.4163 AGB=0.1245*DAP^2.4163 AGB=0.1245*DAP^2.4163 AGB=0.1245*DAP^2.4163 AGB=0.1245*DAP^2.4163 AGB=0.1245*DAP^2.4163 AGB=0.1245*DAP^2.4163 AGB=0.1245*DAP^2.4163	Chojnacky et al. 2014 Hung et al. 2012 Hung et al. 2012 Chojnacky et al. 2014 Chojnacky et al. 2012 Hung et al. 2012 Hung et al. 2012 Rodríguez et al. 2008 Williams et al. 2005
Loganiaceae Lythraceae Magnoliaceae Malvaceae	Juglans regia Cinnamomum camphora Cinnamomum glanduliferum Cinnamomum iners Laurus nobilis Nectandra angustifolia Nectandra lanceolata Ocotea acutifolia Ocotea puberula Persea americana Strychnos brasiliensis Lagerstroemia indica Liriodendron tulipifera Magnolia y soulangeana Magnolia grandiflora Magnolia ililiflora Magnolia stellata Brachychiton populneus Ceiba speciosa Luehea divaricata Tilia viridis ssp. ×moltkei Cedrela lilloi Melia azedarach	AGB=EXP(-2.5095+2.6175*LN(DAP)) AGB=EXP(-2.2118+2.4133*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=CXP(-2.5497+2.5011*LN(DAP)) AGB=CXP(-2.5497+2.5011*LN(DAP)) AGB=CXP(-2.5497+2.5011*LN(DAP)) AGB=0.1245*DAP^2.4163 AGB=0.1245*DAP^2.4163 AGB=0.1245*DAP^2.4163 AGB=0.1245*DAP^2.4163 AGB=0.1245*DAP^2.58164 AGB=EXP(-2.2111+2.4831*LN(DAP)) AGB=0.1245*DAP^2.4163	Chojnacky et al. 2014 Hung et al. 2012 Hung et al. 2012 Chojnacky et al. 2014 Hung et al. 2012 Hung et al. 2012 Hung et al. 2012 Rodríguez et al. 2008 Williams et al. 2005 Hung et al. 2012
Loganiaceae Lythraceae Magnoliaceae Malvaceae	Juglans regia Cinnamomum camphora Cinnamomum glanduliferum Cinnamomum iners Laurus nobilis Nectandra angustifolia Nectandra lanceolata Ocotea acutifolia Ocotea puberula Persea americana Strychnos brasiliensis Lagerstroemia indica Liriodendron tulipifera Magnolia × soulangeana Magnolia grandiflora Magnolia ililiflora Magnolia stellata Brachychiton populneus Ceiba chodatii Ceiba speciosa Luehea divaricata Tilia viridis ssp. ×moltkei Cedrela lilloi Melia azedarach Cocculus laurifolius	AGB=EXP(-2.5095+2.6175*LN(DAP)) AGB=EXP(-2.2118+2.4133*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=0.1245*DAP^2.4163	Chojnacky et al. 2014 Chojnacky et al. 2012 Hung et al. 2012 Chojnacky et al. 2014 Hung et al. 2012 Hung et al. 2012 Hung et al. 2012 Hung et al. 2005 Hung et al. 2012
Loganiaceae Lythraceae Magnoliaceae Malvaceae	Juglans regia Cinnamomum camphora Cinnamomum glanduliferum Cinnamomum iners Laurus nobilis Nectandra angustifolia Nectandra lanceolata Ocotea acutifolia Ocotea puberula Persea americana Strychnos brasiliensis Lagerstroemia indica Liriodendron tulipifera Magnolia y soulangeana Magnolia grandiflora Magnolia ililiflora Magnolia stellata Brachychiton populneus Ceiba chodatii Ceiba speciosa Luehea divaricata Tilia viridis ssp. ×moltkei Cedrela lilloi Melia azedarach Cocculus laurifolius Broussonetia papyrifera	AGB=EXP(-2.5095+2.6175*LN(DAP)) AGB=EXP(-2.2118+2.4133*LN(DAP)) AGB=EXP(-2.5497+2.4163 AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=0.1245*DAP^2.4163	Chojnacky et al. 2014 Hung et al. 2012 Hung et al. 2012 Chojnacky et al. 2014 Hung et al. 2012
Loganiaceae Lythraceae Magnoliaceae Malvaceae	Juglans regia Cinnamomum camphora Cinnamomum glanduliferum Cinnamomum iners Laurus nobilis Nectandra angustifolia Nectandra lanceolata Ocotea acutifolia Ocotea puberula Persea americana Strychnos brasiliensis Lagerstroemia indica Liriodendron tulipifera Magnolia × soulangeana Magnolia grandiflora Magnolia stellata Brachychiton populneus Ceiba chodatii Ceiba speciosa Luehea divaricata Tilia viridis ssp. ×moltkei Cedrela lilloi Melia azedarach Cocculus laurifolius Broussonetia papyrifera Ficus auriculata	AGB=EXP(-2.5095+2.6175*LN(DAP)) AGB=EXP(-2.2118+2.4133*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=C.1245*DAP^2.4163 AGB=0.1245*DAP^2.4163	Chojnacky et al. 2014 Chojnacky et al. 2012 Hung et al. 2012 Chojnacky et al. 2014 Chojnacky et al. 2012 Hung et al. 2012
Loganiaceae Lythraceae Magnoliaceae Malvaceae Menispermaceae	Juglans regia Cinnamomum camphora Cinnamomum glanduliferum Cinnamomum iners Laurus nobilis Nectandra angustifolia Nectandra lanceolata Ocotea acutifolia Ocotea puberula Persea americana Strychnos brasiliensis Lagerstroemia indica Liriodendron tulipifera Magnolia y soulangeana Magnolia grandiflora Magnolia ililiflora Magnolia stellata Brachychiton populneus Ceiba chodatii Ceiba speciosa Luehea divaricata Tilia viridis ssp. ×moltkei Cedrela lilloi Melia azedarach Cocculus laurifolius Broussonetia papyrifera	AGB=EXP(-2.5095+2.6175*LN(DAP)) AGB=EXP(-2.2118+2.4133*LN(DAP)) AGB=EXP(-2.5497+2.4163 AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=0.1245*DAP^2.4163	Chojnacky et al. 2014 Hung et al. 2012 Hung et al. 2012 Chojnacky et al. 2014 Hung et al. 2012
Loganiaceae Lythraceae Magnoliaceae Malvaceae	Juglans regia Cinnamomum camphora Cinnamomum glanduliferum Cinnamomum iners Laurus nobilis Nectandra angustifolia Nectandra lanceolata Ocotea acutifolia Ocotea puberula Persea americana Strychnos brasiliensis Lagerstroemia indica Liriodendron tulipifera Magnolia × soulangeana Magnolia grandiflora Magnolia stellata Brachychiton populneus Ceiba chodatii Ceiba speciosa Luehea divaricata Tilia viridis ssp. ×moltkei Cedrela lilloi Melia azedarach Cocculus laurifolius Broussonetia papyrifera Ficus auriculata	AGB=EXP(-2.5095+2.6175*LN(DAP)) AGB=EXP(-2.2118+2.4133*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=C.1245*DAP^2.4163 AGB=0.1245*DAP^2.4163	Chojnacky et al. 2014 Chojnacky et al. 2012 Hung et al. 2012 Chojnacky et al. 2014 Chojnacky et al. 2012 Hung et al. 2012
Loganiaceae Lythraceae Magnoliaceae Malvaceae	Juglans regia Cinnamomum camphora Cinnamomum glanduliferum Cinnamomum iners Laurus nobilis Nectandra angustifolia Nectandra lanceolata Ocotea acutifolia Ocotea puberula Persea americana Strychnos brasiliensis Lagerstroemia indica Liriodendron tulipifera Magnolia × soulangeana Magnolia grandiflora Magnolia ililiflora Magnolia stellata Brachychiton populneus Ceiba speciosa Luehea divaricata Tilia viridis ssp. ×moltkei Cedrela lilloi Melia azedarach Cocculus laurifolius Broussonetia papyrifera Ficus auriculata Ficus benjamina	AGB=EXP(-2.5095+2.6175*LN(DAP)) AGB=EXP(-2.2118+2.4133*LN(DAP)) AGB=EXP(-2.5497+2.4163 AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=EXP(-2.5497+2.5011*LN(DAP)) AGB=0.1245*DAP^2.4163 AGB=0.1245*DAP^2.4163	Chojnacky et al. 2014 Hung et al. 2012 Hung et al. 2012 Chojnacky et al. 2014 Hung et al. 2012

Ficus Inschmatinian		Figure algorithm	ACD 0.424F*DADA2.44C2	U at al. 2012
Maclura pomijera AGB-0.1245*DAPP-2.4163 Hung et al. 2012 Moras singra AGB-0.1245*DAPP-2.4163 Hung et al. 2012 Mass a prandisisca AGB-0.1245*DAPP-2.4163 Hung et al. 2012 Mass a prandisisca AGB-0.1245*DAPP-2.4163 Hung et al. 2012 Mass a prandisisca AGB-0.1705+(7.19*DAP) Brown et al. 1989 Myrtaceoe Accosellowiona AGB-0.1705+(7.19*DAP) Millions et al. 2005 Myrtaceoe Accosellowiona AGB-0.1705+(7.19*DAP) Millions et al. 2005 Millions et		Ficus luschnathiana	AGB=0.1245*DAP^2.4163	Hung et al. 2012
Moras sibar sibar moras sibar sibar moras sibar s				-
Massecee Muss a prondisiona AGB=0.1245*DAP-2.4163 Hung et al. 2012 Myrtaceee AGB-sePh.1996-2.23*IN(DAP) Brown et al. 1999 Myrtaceee Acca sellowinn AGB-10.7054/7.19*DAP) Ral SN 1984 Millams et al. 2005 Callisteeno citrinus AGB-EMPL 2.2111-2.4831*IN(DAP) Williams et al. 2005 Callisteeno citrinus AGB-EMPL 2.2111-2.4831*IN(DAP) Williams et al. 2005 Eucalyptus colineree AGB-EMPL 2.2111-2.4831*IN(DAP) Williams et al. 2005 Eucalyptus citodora AGB-EMPL 2.2111-2.4831*IN(DAP) Williams et al. 2005 Eucalyptus sideroxylon AGB-EMPL 2.2111-2.4831*IN(DAP) Williams et al. 2005 Eucalyptus sideroxylon AGB-EMPL 2.2111-2.4831*IN(DAP) Williams et al. 2005 Eugenia fungenes AGB-EMPL 2.2111-2.4831*IN(DAP) Williams et al. 2005 Eugenia fungenes AGB-EMPL 2.2111-2.4831*IN(DAP) Williams et al. 2005 Myctaginaccee Bougainwillea stipitata AGB-EMPL 2.2111-2.4831*IN(DAP) Williams et al. 2005 Myctaginaccee Bougainwillea stipitata AGB-D.1745AP-2.463 Hung et al. 2012 Myctaginaccee Bougainwillea stipitata AGB-D.1745A		. ,		•
Musaceee Musa x paradisloca AGB-EXP(1_996-2_32*IN(DAP)) Brown et al. 1989 Mytraceee Acca sellowinan AGB-EXP(-2_1111+2_4831*IN(DAP)) Rail SN 1984 Belphorocolyx salicifolus AGB-EXP(-2_1111+2_4831*IN(DAP)) Williams et al. 2005 Callistemon stalignus AGB-EXP(-2_1111+2_4831*IN(DAP)) Williams et al. 2005 Eucophysis connected AGB-EXP(-2_1111+2_4831*IN(DAP)) Williams et al. 2005 Eucophysis connected AGB-EXP(-2_1111+2_4831*IN(DAP)) Williams et al. 2005 Eucophysis globulus AGB-EXP(-2_1111+2_4831*IN(DAP)) Williams et al. 2005 Eucophysis dereticomis AGB-EXP(-2_1111+2_4831*IN(DAP)) Williams et al. 2005 Eugenia fillionna AGB-EXP(-2_111+2_4831*IN(DAP)) Williams et al. 2005 Milliams et al. 2005 AGB-EXP(-2_2111+2_4831*IN(DAP)) Williams et al. 2012				=
Myrtaceae Acca sellowinan AGB=10.705-(7.19*DAP) Rais N 1984 Bepharozopys salicifolius AGB=EXPI-2.2111-2.4831*IN(DAP) Williams et al. 2005 Callistemon citrinus AGB=EXPI-2.2111-2.4831*IN(DAP) Williams et al. 2005 Callistemon citrinus AGB=EXPI-2.2111-2.4831*IN(DAP) Williams et al. 2005 Eucolyptus cinerea AGB=EXPI-2.2111-2.4831*IN(DAP) Williams et al. 2005 Eucolyptus circinodra AGB=EXPI-2.2111-2.4831*IN(DAP) Williams et al. 2005 Eugenia principal AGB=EXPI-2.2111-2.4831*IN(DAP) Williams et al. 2005 Eugenia principal AGB=EXPI-2.2111-2.4831*IN(DAP) Williams et al. 2005 Herochlamys edulis AGB=LXPI-2.2111-2.4831*IN(DAP) Williams et al. 2005 Pullian principa	Musaceae	-		
Blepharocalys salic[olius		1	, , , , , , , , , , , , , , , , , , , ,	
Callistemon citrinus	Wyrtaccac		· · · · · · · · · · · · · · · · · · ·	
Calistemon solignus Calistemon solignus Eucolytus comedulensis AGB-EXP(-2.2111-2.4831*INIDAP) Williams et al. 2005 Eucolytus circiedora AGB-EXP(-2.2111-2.4831*INIDAP) Williams et al. 2005 Eucolytus globulus AGB-EXP(-2.2111-2.4831*INIDAP) Williams et al. 2005 Eucolyptus sideroxylon AGB-EXP(-2.2111-2.4831*INIDAP) Williams et al. 2005 Eucolyptus sideroxylon AGB-EXP(-2.2111-2.4831*INIDAP) Williams et al. 2005 Eucolyptus sideroxylon AGB-EXP(-2.2111-2.4831*INIDAP) Williams et al. 2005 Eugenia pungens AGB-EXP(-2.2111-2.4831*INIDAP) Williams et al. 2005 Plinia rivularis AGB-0.1245*DAP-2.4163 Williams et al. 2001 Plinia rivularis AGB-0.1245*DAP-2.4163 Williams et al. 2001 Wyctoginaceae Bougainvillea stipitota AGB-0.1245*DAP-2.4163 Hung et al. 2012 Wyctoginaceae Bougainvillea stipitota AGB-0.17*DAP-2.46 Alberti et al. 2005 Froxinus pennsylvanica AGB-0.17*DAP-2.46 Alberti et al. 2005 AGB-EXP(-2.0314-2.3524*INIDAP) Chojnacky et al. 2014 Paulowniaceae Paulownia tomentosa AGB-0.1245*DAP-2.4163 Hung et al. 2012 Papoveraceae Papoveracea			, , ,,	
Eucalystus circeira AGB-EXP(-2.2111-2.4831*INIDAP) Williams et al. 2005			, , , , , , , , , , , , , , , , , , , ,	
Eucalystus globulus		Eucalyptus camaldulensis	AGB=EXP(-2.2111+2.4831*LN(DAP))	Williams et al. 2005
Eucalystus globulus AGB-EXP(-2.2111-2.4831*INIDAP) Williams et al. 2005 Eucalystus tereticornis AGB-EXP(-2.2111-2.4831*INIDAP) Williams et al. 2005 Eugenia lilidona AGB-EXP(-2.2111-2.4831*INIDAP) Williams et al. 2005 Eugenia uniflora AGB-EXP(-2.2111-2.4831*INIDAP) Williams et al. 2005 Eugenia uniflora AGB-EXP(-2.2111-2.4831*INIDAP) Williams et al. 2005 Eugenia uniflora AGB-EXP(-2.2111-2.4831*INIDAP) Williams et al. 2005 Hexachlomys edulis AGB-EXP(-2.2111-2.4831*INIDAP) Williams et al. 2005 Pilina irvularis AGB-EXP(-2.2111-2.4831*INIDAP) Williams et al. 2005 Hung et al. 2012 Williams et al. 2005 Hung et al. 2012 Williams et al. 2005 Wy.ctaginaceae Boagainvillea stipitata AGB-EXP(-2.2111-2.4831*INIDAP) Williams et al. 2005 AGB-EXP(-2.2111-2.4831*INIDAP) Williams et al. 2005 AGB-EXP(-2.2014-2.4831*INIDAP) Williams et al. 2005 AGB-EXP(-2.2014-2.4831*INIDAP) Williams et al. 2005 AGB-EXP(-2.2014-2.4831*INIDAP) Colleaceae Fraxinus excelsior AGB-EXP(-2.0314-2.3524*INIDAP) Colleaceae AGB-EXP(-2.0314-2.3534*INIDAP) Colleaceae AGB-EXP(-2.0314-2.3534*INIDAP) Colleaceae AGB-EXP(-2.0314-2.3334*INIDAP) Colleaceae AGB-EXP(-2.0314-2.3334*INIDAP) Colleaceae AGB-EXP(-2.0314-2.3334*INIDAP) Colleaceae AGB-EXP(-2.0314-2.3334*INIDAP) Colleaceae AGB-EXP(-2.0314-2.3334*INIDAP) Colleaceae AGB-EXP(-2.0314-2.3334*INIDAP) Colleaceae AGB-EXP(-2.2014-2.3334*INIDAP) Colleaceae AGB-EXP(-2.2014-2.3334*IN		Eucalyptus cinerea	AGB=EXP(-2.2111+2.4831*LN(DAP))	Williams et al. 2005
Eucolyptus sideroxylon AGB=ENP(-2.2111-2.4831*IN(DAP) Williams et al. 2005		Eucalyptus citriodora	AGB=EXP(-2.2111+2.4831*LN(DAP))	Williams et al. 2005
Eucolyptus tereticomis AGB=ExP(-2.2111-2.4831*IN(DAP) Willioms et al. 2005		Eucalyptus globulus	AGB=EXP(-2.2111+2.4831*LN(DAP))	Williams et al. 2005
Eugenia lilloana AGB=KP(-2.2111-2.4831*IN(DAP) Williams et al. 2005 Eugenia uniflora AGB=KP(-2.2111-2.4831*IN(DAP) Williams et al. 2005 Hexachlamys edulis AGB=C1245*DAP*2.4163 Hung et al. 2012 Plinia rivularis AGB=C1245*DAP*2.4163 Hung et al. 2012 Plinia rivularis AGB=KP(-2.2111-2.4831*IN(DAP) Williams et al. 2005 Hung et al. 2012 Plinia rivularis AGB=KP(-2.2111-2.4831*IN(DAP) Williams et al. 2005 Production Produc		· · · · · · · · · · · · · · · · · · ·	, , , , , , , , , , , , , , , , , , , ,	
Eugenia pungens AGB=EXP(-2.2111-2.4831*N(DAP) Williams et al. 2005		· · · · · · · · · · · · · · · · · · ·	, , , , , , , , , , , , , , , , , , , ,	
Eugenia uniflora AGB=EXP[-2.2111-2.4831*IN(DAP) Williams et al. 2005 Plinia rivularis AGB=0.17*DAP*2.46 Alberti et al. 2005 Fraxinus pennsylvanica AGB=0.17*DAP*2.46 Alberti et al. 2005 Alberti et al. 2005 Fraxinus pennsylvanica AGB=0.17*DAP*2.46 Alberti et al. 2005 AGB=0.1245*DAP*2.4163 Hung et al. 2014 AGB=EXP[-2.0314-2.3524*IN(DAP) Chojnacky et al. 2014 AGB=EXP[-3.007*2.5339*IN(DAP) Chojnacky et al. 2014		5	, , , , , , , , , , , , , , , , , , , ,	
Hevachlamys edulis			, , , , , , , , , , , , , , , , , , , ,	
Pilnia rivularis AGB=EKP(-2.2111-2.4831*LN(DAP) Williams et al. 2005 Psidium quajava AGB=EKP(-2.2111-2.4831*LN(DAP) Williams et al. 2005 Nyctaginaceae Bougainvillea stipitata AGB=0.17*DAP*2.46 Alberti et al. 2005 Fraxinus excelsior Fraxinus excelsior Fraxinus annus AGB=0.17*DAP*2.46 Alberti et al. 2005 Fraxinus pennsylvanica AGB=0.17*DAP*2.46 Alberti et al. 2005 Fraxinus pennsylvanica AGB=0.17*DAP*2.46 Alberti et al. 2005 Ligustrum lucidum AGB=EXP(-2.0314-2.3524*LN(DAP) Chojnacky et al. 2014 Olea europaea AGB=EXP(-2.0314-2.3524*LN(DAP) Chojnacky et al. 2014 Papaveraceae Bacconia arborea AGB=0.1245*DAP*2.4163 Hung et al. 2012 Palulowniaceae Paulownia tomentosa AGB=0.1245*DAP*2.4163 Hung et al. 2012 Phytolaccaceae Phytolacca dioica AGB=0.1245*DAP*2.4163 Hung et al. 2012 Phytolaccaceae Phytolacca dioica AGB=EXP(-3.2007*2.5339*LN(DAP) Chojnacky et al. 2014 Pinaceae Abies alba AGB=EXP(-3.2007*2.5339*LN(DAP) Chojnacky et al. 2014 Cedrus atlantica AGB=EXP(-3.2007*2.5339*LN(DAP) Chojnacky et al. 2014 Cedrus diobies AGB=EXP(-3.2007*2.5339*LN(DAP) Chojnacky et al. 2014 Pinus canariensis AGB=EXP(-3.2007*2.5339*LN(DAP) Chojnacky et al. 2014 Pinus prinasea AGB=EXP(-3.2007*2.5339*LN(DAP) Chojnacky et al. 20		,	, , , , , , , , , , , , , , , , , , , ,	
Psidium guajovo		•		
Nyctaginaceae			, , , , , , , , , , , , , , , , , , , ,	
Oleaceae Fraxinus excelsior Fraxinus pernsylvanica AGB= 0.17*DAP^2.46 Alberti et al. 2005 AGB=EXP(-2.0314+2.3524*LN(DAP)) Chojnacky et al. 2014 Papaveraceae Bocconia arborea AGB=0.1245*DAP^2.4163 Hung et al. 2012 Paulowiniaceae Phytolaccaeae Phytolaccaeaioica AGB=0.1245*DAP^2.4163 Hung et al. 2012 Pinaceae Ables alba AGB=EXP(-3.2007+2.5339*LN(DAP) Chojnacky et al. 2014 Cedrus deodara AGB=EXP(-3.2007+2.5339*LN(DAP) Chojnacky et al. 2014 Cedrus deodara AGB=EXP(-3.2007+2.5339*LN(DAP) Chojnacky et al. 2014 Pinus canariensis AGB=EXP(-3.2007+2.5339*LN(DAP) Chojnacky et al. 2014 Pinus elliottii AGB=EXP(-3.2007+2.5339*LN(DAP) Chojnacky et al. 2014 Pinus pinas ter AGB=EXP(-3.2007+2.5339*LN(DAP) Chojnacky et al. 2014 Pinus pinas pina AGB=EXP(-3.2007+2.5339*LN(DAP) Chojnacky et al. 2014 Pinus pinas pina	Nuctacinacos	3 ,		
Fraxinus ornus	<u> </u>	·		
Fraxinus pennsylvanica AGB=0.17*DAP-2.46	Oleucede			
Ligustrum lucidium				
Olea europaea AGB=EXP(-2.0314+2.3524*LN(DAP) Chojnacky et al. 2014				
Papoveraceae Bocconia arborea AGB=0.1245*DAP^2.4163 Hung et al. 2012 Paulowniaceae Paulownia tomentosa AGB=0.1245*DAP^2.4163 Hung et al. 2012 Phytolaccaeee Phytolacca dioica AGB=0.1245*DAP^2.4163 Hung et al. 2012 Pinaceae Abies alba AGB=EXP(-3.2007+2.5339*IN(DAP)) Chojnacky et al. 2014 Cedrus deodara AGB=EXP(-3.2007+2.5339*IN(DAP)) Chojnacky et al. 2014 Cedrus libani AGB=EXP(-3.2007+2.5339*IN(DAP)) Chojnacky et al. 2014 Pinus canariensis AGB=EXP(-3.2007+2.5339*IN(DAP)) Chojnacky et al. 2014 Pinus balepensis AGB=EXP(-3.2007+2.5339*IN(DAP)) Chojnacky et al. 2014 Pinus pinaster AGB=EXP(-3.2007+2.5339*IN(DAP)) Chojnacky et al. 2014 Pinus pinaster AGB=EXP(-3.2007+2.5339*IN(DAP)) Chojnacky et al. 2014 Pinus sylvestris AGB=EXP(-3.2007+2.5339*IN(DAP)) Chojnacky et al. 2014 Pittosporaceae Pittosporum tobira AGB=EXP(-3.2007+2.5339*IN(DAP)) Chojnacky et al. 2014 Pittosporaceae Pittanus occidentalis AGB=EXP(-2.2118+2.4133*IN(DAP)) Chojnacky et al. 2014 Podocorpaceae Pittanus occidentalis <td></td> <td>-</td> <td>, , , , , , , , , , , , , , , , , , , ,</td> <td>, ,</td>		-	, , , , , , , , , , , , , , , , , , , ,	, ,
Paulowniaceae Paulownia tomentosa AGB=0.1245*DAP^2.4163 Hung et al. 2012 Phytolacca dioica AGB=0.1245*DAP^2.4163 Hung et al. 2012 Phytolacca dioica AGB=EXPI<-3.2007+2.5339*LN(DAP) Chojnacky et al. 2014 Cedrus atlantica AGB=EXPI<-3.007+2.5339*LN(DAP) Chojnacky et al. 2014 Cedrus libani AGB=EXPI<-3.056+2.6465*LN(DAP) Chojnacky et al. 2014 Pice a bies AGB=EXPI<-3.2007+2.5339*LN(DAP) Chojnacky et al. 2014 Pinus canariensis AGB=EXPI<-3.2007+2.5339*LN(DAP) Chojnacky et al. 2014 Pinus elliottii AGB=EXPI<-3.2007+2.5339*LN(DAP) Chojnacky et al. 2014 Pinus pinaster AGB=EXPI<-3.2007+2.5339*LN(DAP) Chojnacky et al. 2014 Pinus pinea AGB=EXPI<-3.2007+2.5339*LN(DAP) Chojnacky et al. 2014 Pinus sylvestris AGB=EXPI<-3.2007+2.5339*LN(DAP) Chojnacky et al. 2014 Pinus subunbergii AGB=EXPI<-3.2007+2.5339*LN(DAP) Chojnacky et al. 2014 Pittosporaceae Pittosporum tobira AGB=EXPI<-3.2007+2.5339*LN(DAP) Chojnacky et al. 2014 Pittosporum tobira AGB=EXPI<-2.2014-2.5339*LN(DAP) Chojnacky et al. 2014 Pittosporum tobira <td>Panaveraceae</td> <td>•</td> <td></td> <td></td>	Panaveraceae	•		
Phytolaccaeae Phytolacca dioica AGB=0.1245*DAP^2.4163 Hung et al. 2012 Pinaceae Abies alba AGB=EXPF1.3.007+2.5339*LN(DAP) Chojnacky et al. 2014 Cedrus atlantica AGB=EXPF1.3.007+2.5339*LN(DAP) Chojnacky et al. 2014 Cedrus libani AGB=EXPF1.3.007+2.5339*LN(DAP) Chojnacky et al. 2014 Pice a bies AGB=EXPF1.3.007+2.5339*LN(DAP) Chojnacky et al. 2014 Pinus canariensis AGB=EXPF1.3.007+2.5339*LN(DAP) Chojnacky et al. 2014 Pinus beliotiti AGB=EXPF1.3.007+2.5339*LN(DAP) Chojnacky et al. 2014 Pinus pinester AGB=EXPF1.3.007+2.5339*LN(DAP) Chojnacky et al. 2014 Pinus pinea AGB=EXPF1.3.007+2.5339*LN(DAP) Chojnacky et al. 2014 Pinus sylvestris AGB=EXPF1.3.007+2.5339*LN(DAP) Chojnacky et al. 2014 Pinus sylvestris AGB=EXPF1.3.007+2.5339*LN(DAP) Chojnacky et al. 2014 Pinus sylvestris AGB=EXPF2.3.007+2.5339*LN(DAP) Chojnacky et al. 2014 Pittosporaceae Pittosporum tobira AGB=EXPF2.3.007+2.5339*LN(DAP) Chojnacky et al. 2012 Pidatanceae Pittosporum tobira AGB=EXPF2.3.007+2.5339*LN(DAP) Chojnacky et al. 2014 </td <td>•</td> <td></td> <td></td> <td></td>	•			
Pinaceae				
Cedrus atlantica AGB=EXP[-3.2007+2.5339*LN(DAP]) Chojnacky et al. 2014 Cedrus deodara AGB=EXP[-3.0506+2.6465*LN(DAP]) Chojnacky et al. 2014 Cedrus libani AGB=EXP[-3.2007+2.5339*LN(DAP]) Chojnacky et al. 2014 Picea abies AGB=EXP[-3.2007+2.5339*LN(DAP]) Chojnacky et al. 2014 Pinus canariensis AGB=EXP[-3.2007+2.5339*LN(DAP]) Chojnacky et al. 2014 Pinus pinus elliottii AGB=EXP[-3.2007+2.5339*LN(DAP]) Chojnacky et al. 2014 Pinus pinaster AGB=EXP[-3.2007+2.5339*LN(DAP]) Chojnacky et al. 2014 Pitus pinaster AGB=EXP[-3.2007+2.5339*LN(DAP]) Chojnacky et al. 2014 Pitus pinaster AGB=EXP[-3.2007+2.5339*LN(DAP]) Chojnacky et al. 2014 Pitus pinaster AGB=EXP[-3.2007+2.5339*LN(DAP])	,	,		
Cedrus deodara	T maccac		, , , , , , , , , , , , , , , , , , , ,	• •
Cedrus libani			, , ,,	• •
Pinus canariensis AGB=EXP(-3.2007+2.5339*LN(DAP)) Chojnacky et al. 2014 Pinus elliottii AGB=EXP(-3.2007+2.5339*LN(DAP)) Chojnacky et al. 2014 Pinus halepensis AGB=EXP(-3.2007+2.5339*LN(DAP)) Chojnacky et al. 2014 Pinus pinea AGB=EXP(-3.2007+2.5339*LN(DAP)) Chojnacky et al. 2014 Pinus pinea AGB=EXP(-3.2007+2.5339*LN(DAP)) Chojnacky et al. 2014 Pinus thunbergii AGB=EXP(-3.2007+2.5339*LN(DAP)) Chojnacky et al. 2014 Pittosporaceae Pittosporum tobira AGB=EXP(-2.2118+2.4163 Hung et al. 2012 Pittosporaceae Potocarporeae Potocarporeae Podocarporeae Podocarporeae Podocarporeae Podocarporeae AGB=EXP(-2.2118+2.4133*LN(DAP)) Chojnacky et al. 2014 Polygonaceae Ruprechtial iaxifiora AGB=EXP(-2.2118+2.4133*LN(DAP)) Chojnacky et al. 2014			, , , , , , , , , , , , , , , , , , , ,	• •
Pinus elliottii AGB=EXP(-3.2007+2.5339*LN(DAP)) Chojnacky et al. 2014 Pinus halepensis AGB=EXP(-3.2007+2.5339*LN(DAP)) Chojnacky et al. 2014 Pinus pinaster AGB=EXP(-3.2007+2.5339*LN(DAP)) Chojnacky et al. 2014 Pinus pinea AGB=EXP(-3.2007+2.5339*LN(DAP)) Chojnacky et al. 2014 Pinus sylvestris AGB=EXP(-3.2007+2.5339*LN(DAP)) Chojnacky et al. 2014 Pinus thunbergii AGB=EXP(-3.2007+2.5339*LN(DAP)) Chojnacky et al. 2014 Pittosporaceae Pittosporum tobira AGB=EXP(-3.2007+2.5339*LN(DAP)) Chojnacky et al. 2012 Pittonaceae Pittosus occidentalis AGB=EXP(-2.2118+2.4133*LN(DAP)) Chojnacky et al. 2014 Podocarpaceae Podocarpaceae Interial laxiflora AGB=EXP(-2.2118+2.4133*LN(DAP)) Chojnacky et al. 2014 Polygonaceae Ruprechtia laxiflora AGB=EXP(-2.2118+2.4133*LN(DAP)) Chojnacky et al. 2012 Primulaceae Myrsine laetevirens AGB=0.1245*DAP^2.4163 Hung et al. 2012 Primulaceae Myrsine laetevirens AGB=0.1245*DAP^2.4163 Hung et al. 2012 Proteceae Grevillea robusta AGB=EXP(-2.2111+2.4831*LN(DAP)) Chojnacky et al. 2014		Picea abies	AGB=EXP(-3.2007+2.5339*LN(DAP))	Chojnacky et al. 2014
Pinus halepensis		Pinus canariensis	AGB=EXP(-3.2007+2.5339*LN(DAP))	Chojnacky et al. 2014
Pinus pinaster AGB=EXP(-3.2007+2.5339*LN(DAP)) Chojnacky et al. 2014 Pinus pinea AGB=EXP(-3.2007+2.5339*LN(DAP)) Chojnacky et al. 2014 Pinus sylvestris AGB=EXP(-3.2007+2.5339*LN(DAP)) Chojnacky et al. 2014 Pitus porum tobira AGB=EXP(-3.2007+2.5339*LN(DAP)) Chojnacky et al. 2014 Pittosporaceae Pittosporum tobira AGB=0.1245*DAP^2.4163 Hung et al. 2012 Platanus × acerifolia Platanus occidentalis AGB=EXP(-2.2118+2.4133*LN(DAP)) Chojnacky et al. 2014 Podocarpaceae Podocarpus parlatorei AGB=EXP(-3.2007+2.5339*LN(DAP)) Chojnacky et al. 2014 Polygonaceae Podocarpus parlatorei AGB=CXP(-2.2118+2.4133*LN(DAP)) Chojnacky et al. 2014 Polygonaceae Ruprechtia laxiflora AGB=0.1245*DAP^2.4163 Hung et al. 2012 Primulaceae Myrsine laetevirens AGB=0.1245*DAP^2.4163 Hung et al. 2012 Proteaceae Grevillea robusta AGB=EXP(-2.2111+2.4831*LN(DAP)) Williams et al. 2012 Proteaceae Hovenia dulcis AGB=EXP(-2.2111+2.4831*LN(DAP)) Chojnacky et al. 2014 Rosaceae Crataegus laevigata AGB=0.1245*DAP^2.4163 Hung et al. 2012		Pinus elliottii	AGB=EXP(-3.2007+2.5339*LN(DAP))	Chojnacky et al. 2014
Pinus pinea AGB=EXP(-3.2007+2.5339*LN(DAP)) Chojnacky et al. 2014 Pinus sylvestris AGB=EXP(-3.2007+2.5339*LN(DAP)) Chojnacky et al. 2014 Pitus shunbergii AGB=EXP(-3.2007+2.5339*LN(DAP)) Chojnacky et al. 2014 Pittosporum tobira AGB=0.1245*DAPP.2.4163 Hung et al. 2012 Platanaceae Platanus × acerifolia AGB=EXP(-2.2118+2.4133*LN(DAP)) Chojnacky et al. 2014 Podocarpaceae Podocarpus parlatorei AGB=EXP(-3.2007+2.5339*LN(DAP)) Chojnacky et al. 2014 Polygonaceae Podocarpus parlatorei AGB=EXP(-3.2007+2.5339*LN(DAP)) Chojnacky et al. 2014 Polygonaceae Ruprechtia laxiflora AGB=EXP(-3.2007+2.5339*LN(DAP)) Chojnacky et al. 2014 Primulaceae Myrsine laetevirens AGB=0.1245*DAP-2.4163 Hung et al. 2012 Proteaceae Grevillea robusta AGB=EXP(-2.0314+2.3524*LN(DAP)) Williams et al. 2005 Rhamnaceae Hovenia dulcis AGB=EXP(-2.0314+2.3524*LN(DAP)) Chojnacky et al. 2014 Rosaceae Crataegus laevigata AGB=EXP(-2.0314+2.3524*LN(DAP)) Chojnacky et al. 2014 Rosaceae Crataegus laevigata AGB=EXP(-2.9255+2.4109*LN(DAP))		Pinus halepensis	AGB=EXP(-3.2007+2.5339*LN(DAP))	Chojnacky et al. 2014
Pinus sylvestris Pinus thunbergii AGB=EXP(-3.2007+2.5339*LN(DAP)) Pittosporaceae Pittosporum tobira AGB=EXP(-3.2007+2.5339*LN(DAP)) Pittosporaceae Pittosporum tobira AGB=EXP(-2.2118+2.4133*LN(DAP)) Platanus x acerifolia AGB=EXP(-2.2118+2.4133*LN(DAP)) Platanus va cecidentalis AGB=EXP(-2.2118+2.4133*LN(DAP)) Polygonaceae Ruprechtia laxiflora AGB=EXP(-3.2007+2.5339*LN(DAP)) Polygonaceae Ruprechtia laxiflora AGB=EXP(-3.2007+2.5339*LN(DAP)) Primulaceae Myrsine laetevirens AGB=0.1245*DAP^2.4163 Hung et al. 2012 Proteaceae Grevillea robusta AGB=EXP(-2.2111+2.4831*LN(DAP)) AGB=EXP(-2.2111+2.4831*LN(DAP		•		Chojnacky et al. 2014
Pinus thunbergiiAGB=EXP(-3.2007+2.5339*LN(DAP))Chojnacky et al. 2012PittosporaceaePittosporum tobiraAGB=0.1245*DAP^2.4163Hung et al. 2012Platanus ex acerifoliaAGB=EXP(-2.2118+2.4133*LN(DAP))Chojnacky et al. 2014Platanus occidentalisAGB=EXP(-2.2118+2.4133*LN(DAP))Chojnacky et al. 2014PodocarpaceaePodocarpus parlatoreiAGB=EXP(-3.2007+2.5339*IN(DAP))Chojnacky et al. 2014PolygonaceaeRuprechtia laxifloraAGB=EXP(-3.2007+2.5339*IN(DAP))Chojnacky et al. 2012PrimulaceaeMyrsine laetevirensAGB=0.1245*DAP^2.4163Hung et al. 2012PrimulaceaeMyrsine laetevirensAGB=EXP(-2.2111+2.4831*IN(DAP))Williams et al. 2005RhamnaceaeHovenia dulcisAGB=EXP(-2.2111+2.4831*IN(DAP))Chojnacky et al. 2014Scutia buxifoliaAGB=0.1245*DAP^2.4163Hung et al. 2012RosaceaeCrataegus laevigataAGB=0.1245*DAP^2.4163Hung et al. 2012Cydonia oblongaAGB=EXP(-2.9255+2.4109*IN(DAP))Chojnacky et al. 2014Malus domesticaAGB=EXP(-2.9255+2.4109*IN(DAP))Chojnacky et al. 2014Malus domesticaAGB=EXP(-2.9255+2.4109*IN(DAP))Chojnacky et al. 2014Prunus armeniacaAGB=EXP(-2.9255+2.4109*IN(DAP))Chojnacky et al. 2014Prunus domesticaAGB=EXP(-2.9255+2.4109*IN(DAP))Chojnacky et al. 2014Prunus domesticaAGB=EXP(-2.9255+2.4109*IN(DAP))Chojnacky et al. 2014Prunus laurocerasusAGB=EXP(-2.9255+2.4109*IN(DAP))Chojnacky et al. 2014Prunus domesticaAGB=EXP(-2.9255+2.4109*		•	, , , , , , , , , , , , , , , , , , , ,	• •
Pittosporaceae Pittosporum tobira AGB=0.1245*DAP^2.4163 Hung et al. 2012 Platanaceae Platanus × acerifolia AGB=EXP(-2.2118+2.4133*LN(DAP)) Chojnacky et al. 2014 Platanus occidentalis AGB=EXP(-2.2118+2.4133*LN(DAP)) Chojnacky et al. 2014 Podocarpaceae Podocarpus parlatorei AGB=EXP(-3.2007+2.5339*LN(DAP)) Chojnacky et al. 2014 Polygonaceae Ruprechtia laxiflora AGB=0.1245*DAP^2.4163 Hung et al. 2012 Primulaceae Myrsine laetevirens AGB=0.1245*DAP^2.4163 Hung et al. 2012 Proteaceae Grevillea robusta AGB=EXP(-2.2111+2.4831*LN(DAP)) Williams et al. 2012 Proteaceae Hovenia dulcis AGB=EXP(-2.2111+2.4831*LN(DAP)) Williams et al. 2005 Rhamnaceae Hovenia dulcis AGB=0.1245*DAP^2.4163 Hung et al. 2014 Scutia buxifolia AGB=0.1245*DAP^2.4163 Hung et al. 2012 Ziziphus mistol AGB=0.1245*DAP^2.4163 Hung et al. 2012 Rosaceae Crataegus laevigata AGB=EXP(-2.0314+2.3524*LN(DAP)) Chojnacky et al. 2014 Cydonia oblonga AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Eriobotrya japonica AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Malus domestica AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus armeniaca AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus armeniaca AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus domestica AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus domestica AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus laurocerasus AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus laurocerasus AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus persica AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus persica AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus communis AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus communis AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Rosa chinensis AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Rosa chinensis AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Robinaceae Gardenia jasminoides AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014		,		
Platanus × acerifolia Platanus occidentalis AGB=EXP(-2.2118+2.4133*LN(DAP)) Chojnacky et al. 2014 Podocarpaceae Podocarpus parlatorei AGB=EXP(-3.2007+2.5339*LN(DAP)) Chojnacky et al. 2014 Polygonaceae Ruprechtia laxiflora AGB=0.1245*DAP^2.4163 Hung et al. 2012 Primulaceae Myrsine laetevirens AGB=0.1245*DAP^2.4163 Hung et al. 2012 Proteaceae Grevillea robusta AGB=EXP(-2.2111+2.4831*LN(DAP)) Chojnacky et al. 2014 AGB=EXP(-2.2111+2.4831*LN(DAP)) Chojnacky et al. 2015 Rhamnaceae Hovenia dulcis AGB=EXP(-2.2111+2.4831*LN(DAP)) Scutia buxifolia AGB=0.1245*DAP^2.4163 Hung et al. 2012 Ziziphus mistol AGB=0.1245*DAP^2.4163 Hung et al. 2012 Rosaceae Crataegus laevigata AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Cydonia oblonga AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Photinia glabra AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus armeniaca AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus cerasifera AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus domestica AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus laurocerasus AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus persica AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus admensica AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus		<u> </u>		
Platanus occidentalis AGB=EXP(-2.2118+2.4133*LN(DAP)) Chojnacky et al. 2014 Podocarpaceae Podocarpus parlatorei AGB=EXP(-3.2007+2.5339*LN(DAP)) Chojnacky et al. 2014 Polygonaceae Ruprechtia laxiflora AGB=0.1245*DAP^2.4163 Hung et al. 2012 Primulaceae Myrsine laetevirens AGB=0.1245*DAP^2.4163 Hung et al. 2012 Proteaceae Grevillea robusta AGB=EXP(-2.2111+2.4831*LN(DAP)) Williams et al. 2005 Rhamnaceae Hovenia dulcis AGB=EXP(-2.0314+2.3524*LN(DAP)) Williams et al. 2014 Scutia buxifolia AGB=EXP(-2.0314+2.3524*LN(DAP)) Chojnacky et al. 2014 Scutia buxifolia AGB=0.1245*DAP^2.4163 Hung et al. 2012 Ziziphus mistol AGB=0.1245*DAP^2.4163 Hung et al. 2012 Rosaceae Crataegus laevigata AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Cydonia oblonga AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Eriobotrya japonica AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Photinia glabra AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus armeniaca AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus cerasifera AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus domestica AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus domestica AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus laurocerasus AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus persica AGB=EXP(-2.9255+2.4109*LN(DAP))	Pittosporaceae	•		
PodocarpaceaePodocarpus parlatoreiAGB=EXP(-3.2007+2.5339*LN(DAP))Chojnacky et al. 2014PolygonaceaeRuprechtia laxifloraAGB=0.1245*DAP^2.4163Hung et al. 2012PrimulaceaeMyrsine laetevirensAGB=0.1245*DAP^2.4163Hung et al. 2012ProteaceaeGrevillea robustaAGB=EXP(-2.2111+2.4831*LN(DAP))Williams et al. 2005RhamnaceaeHovenia dulcisAGB=EXP(-2.0314+2.3524*LN(DAP))Chojnacky et al. 2014Scutia buxifoliaAGB=0.1245*DAP^2.4163Hung et al. 2012Ziziphus mistolAGB=0.1245*DAP^2.4163Hung et al. 2012RosaceaeCrataegus laevigataAGB=EXP(-2.9255+2.4109*LN(DAP))Chojnacky et al. 2014Cydonia oblongaAGB=EXP(-2.9255+2.4109*LN(DAP))Chojnacky et al. 2014Eriobotrya japonicaAGB=EXP(-2.9255+2.4109*LN(DAP))Chojnacky et al. 2014Malus domesticaAGB=EXP(-2.9255+2.4109*LN(DAP))Chojnacky et al. 2014Photinia glabraAGB=EXP(-2.9255+2.4109*LN(DAP))Chojnacky et al. 2014Prunus armeniacaAGB=EXP(-2.9255+2.4109*LN(DAP))Chojnacky et al. 2014Prunus cerasiferaAGB=EXP(-2.9255+2.4109*LN(DAP))Chojnacky et al. 2014Prunus laurocerasusAGB=EXP(-2.9255+2.4109*LN(DAP))Chojnacky et al. 2014Prunus persicaAGB=EXP(-2.9255+2.4109*LN(DAP))Chojnacky et al. 2014Prunus persicaAGB=EXP(-2.9255+2.4109*LN(DAP))Chojnacky et al. 2014Prunus communisAGB=EXP(-2.9255+2.4109*LN(DAP))Chojnacky et al. 2014Rosa chinensisAGB=EXP(-2.9255+2.4109*LN(DAP))Chojnacky et al. 2014	Platanaceae	•	, , , , , , , , , , , , , , , , , , , ,	• •
PolygonaceaeRuprechtia laxifloraAGB=0.1245*DAP^2.4163Hung et al. 2012PrimulaceaeMyrsine laetevirensAGB=0.1245*DAP^2.4163Hung et al. 2012ProteaceaeGrevillea robustaAGB=EXP(-2.2111+2.4831*LN(DAP))Williams et al. 2005RhamnaceaeHovenia dulcisAGB=EXP(-2.0314+2.3524*LN(DAP))Chojnacky et al. 2014Scutia buxifoliaAGB=0.1245*DAP^2.4163Hung et al. 2012Ziziphus mistolAGB=0.1245*DAP^2.4163Hung et al. 2012RosaceaeCrataegus laevigataAGB=EXP(-2.9255+2.4109*LN(DAP))Chojnacky et al. 2014Cydonia oblongaAGB=EXP(-2.9255+2.4109*LN(DAP))Chojnacky et al. 2014Eriobotrya japonicaAGB=EXP(-2.9255+2.4109*LN(DAP))Chojnacky et al. 2014Malus domesticaAGB=EXP(-2.9255+2.4109*LN(DAP))Chojnacky et al. 2014Photinia glabraAGB=EXP(-2.9255+2.4109*LN(DAP))Chojnacky et al. 2014Prunus armeniacaAGB=EXP(-2.9255+2.4109*LN(DAP))Chojnacky et al. 2014Prunus domesticaAGB=EXP(-2.9255+2.4109*LN(DAP))Chojnacky et al. 2014Prunus dumesticaAGB=EXP(-2.9255+2.4109*LN(DAP))Chojnacky et al. 2014Prunus persicaAGB=EXP(-2.9255+2.4109*LN(DAP))Chojnacky et al. 2014Prunus persicaAGB=EXP(-2.9255+2.4109*LN(DAP))Chojnacky et al. 2014Prunus communisAGB=EXP(-2.9255+2.4109*LN(DAP))Chojnacky et al. 2014Rosa chinensisAGB=EXP(-2.9255+2.4109*LN(DAP))Chojnacky et al. 2014Robus communisAGB=EXP(-2.9255+2.4109*LN(DAP))Chojnacky et al. 2014Robus communis<				
Primulaceae Myrsine laetevirens AGB=0.1245*DAP^2.4163 Hung et al. 2012 Proteaceae Grevillea robusta AGB=EXP(-2.2111+2.4831*LN(DAP)) Williams et al. 2005 Rhamnaceae Hovenia dulcis AGB=EXP(-2.0314+2.3524*LN(DAP)) Chojnacky et al. 2014 Scutia buxifolia AGB=0.1245*DAP^2.4163 Hung et al. 2012 Ziziphus mistol AGB=0.1245*DAP^2.4163 Hung et al. 2012 Rosaceae Crataegus laevigata AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Cydonia oblonga AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Eriobotrya japonica AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Malus domestica AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Photinia glabra AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus armeniaca AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus cerasifera AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus domestica AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus laurocerasus AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus persica AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus domestica AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus persica AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus domestica AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus persica AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus domestica AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus domestica AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prun	· · · · · · · · · · · · · · · · · · ·		, , , , , , , , , , , , , , , , , , , ,	
Proteaceae Grevillea robusta AGB=EXP(-2.2111+2.4831*LN(DAP)) Williams et al. 2005 Rhamnaceae Hovenia dulcis AGB=EXP(-2.0314+2.3524*LN(DAP)) Chojnacky et al. 2014 Scutia buxifolia AGB=0.1245*DAP^2.4163 Hung et al. 2012 Ziziphus mistol AGB=0.1245*DAP^2.4163 Hung et al. 2012 Rosaceae Crataegus laevigata AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Cydonia oblonga AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Eriobotrya japonica AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Malus domestica AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Photinia glabra AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus armeniaca AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus cerasifera AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus domestica AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus laurocerasus AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus persica AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus persica AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus communis AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus communis AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus achinensis AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Rosa chinensis AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Robineae Gardenia jasminoides AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014		· · · · · · · · · · · · · · · · · · ·		-
Rhamnaceae Hovenia dulcis AGB=EXP(-2.0314+2.3524*LN(DAP)) Chojnacky et al. 2014 Scutia buxifolia AGB=0.1245*DAP^2.4163 Hung et al. 2012 Ziziphus mistol AGB=0.1245*DAP^2.4163 Hung et al. 2012 Rosaceae Crataegus laevigata AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Cydonia oblonga AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Eriobotrya japonica AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Malus domestica AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Photinia glabra AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus armeniaca AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus cerasifera AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus domestica AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus laurocerasus AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus persica AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus acerasige AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus persica AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus acerasige AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus persica AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus persica AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Rosa chinensis AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Rubiaceae Gardenia jasminoides AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014		,		
Scutia buxifolia Ziziphus mistol AGB=0.1245*DAP^2.4163 Hung et al. 2012 AGB=0.1245*DAP^2.4163 Hung et al. 2012 Rosaceae Crataegus laevigata AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Eriobotrya japonica AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Photinia glabra AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus armeniaca AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus cerasifera AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus domestica AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus laurocerasus AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus persica AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 AGB=EXP(-2.9255+2.4109*LN(DAP)) AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 AGB=EXP(-2.9255+2.4109*LN(DAP)) AGB=EXP(-2.9255+2.410			, , , , , , , , , , , , , , , , , , , ,	
Ziziphus mistol AGB=0.1245*DAP^2.4163 Hung et al. 2012 Rosaceae Crataegus laevigata AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Cydonia oblonga AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Eriobotrya japonica AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Malus domestica AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Photinia glabra AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus armeniaca AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus cerasifera AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus domestica AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus laurocerasus AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus persica AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus communis AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Rosa chinensis AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Rubiaceae Gardenia jasminoides AGB=0.1245*DAP^2.4163 Hung et al. 2012	Rhamnaceae		, , , , , , , , , , , , , , , , , , , ,	• •
Rosaceae Crataegus laevigata AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Cydonia oblonga AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Eriobotrya japonica AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Malus domestica AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Photinia glabra AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus armeniaca AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus cerasifera AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus domestica AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus laurocerasus AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus persica AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus persica AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Pyrus communis AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Rosa chinensis AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Rubiaceae Gardenia jasminoides AGB=0.1245*DAP^2.4163 Hung et al. 2012		<u> </u>		_
Cydonia oblonga AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Eriobotrya japonica AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Malus domestica AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Photinia glabra AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus armeniaca AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus cerasifera AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus domestica AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus laurocerasus AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus persica AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus communis AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Pyrus communis AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Rosa chinensis AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Sorbus aucuparia AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Rubiaceae Gardenia jasminoides AGB=0.1245*DAP^2.4163 Hung et al. 2012	_	<u> </u>		
Eriobotrya japonica AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Malus domestica AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Photinia glabra AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus armeniaca AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus cerasifera AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus domestica AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus laurocerasus AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus persica AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus persica AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus persica AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 AGB=EXP(-2.9255+2.4109*LN(DAP)) AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 AGB=EXP(-2.9255+2.4109*LN(DAP)) AGB=E	Rosaceae	5 5	, , , , , , , , , , , , , , , , , , , ,	• •
Malus domesticaAGB=EXP(-2.9255+2.4109*LN(DAP))Chojnacky et al. 2014Photinia glabraAGB=EXP(-2.9255+2.4109*LN(DAP))Chojnacky et al. 2014Prunus armeniacaAGB=EXP(-2.9255+2.4109*LN(DAP))Chojnacky et al. 2014Prunus cerasiferaAGB=EXP(-2.9255+2.4109*LN(DAP))Chojnacky et al. 2014Prunus domesticaAGB=EXP(-2.9255+2.4109*LN(DAP))Chojnacky et al. 2014Prunus laurocerasusAGB=EXP(-2.9255+2.4109*LN(DAP))Chojnacky et al. 2014Prunus persicaAGB=EXP(-2.9255+2.4109*LN(DAP))Chojnacky et al. 2014Pyrus communisAGB=EXP(-2.9255+2.4109*LN(DAP))Chojnacky et al. 2014Rosa chinensisAGB=EXP(-2.9255+2.4109*LN(DAP))Chojnacky et al. 2014Sorbus aucupariaAGB=EXP(-2.9255+2.4109*LN(DAP))Chojnacky et al. 2014RubiaceaeGardenia jasminoidesAGB=0.1245*DAP^2.4163Hung et al. 2012		,	, , , , , , , , , , , , , , , , , , , ,	, ,
Photinia glabra AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus armeniaca AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus cerasifera AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus domestica AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus laurocerasus AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus persica AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Pyrus communis AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Rosa chinensis AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Rosa chinensis AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Sorbus aucuparia AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Rubiaceae Gardenia jasminoides AGB=0.1245*DAP^2.4163 Hung et al. 2012			, , , , , , , , , , , , , , , , , , , ,	• •
Prunus armeniaca AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus cerasifera AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus domestica AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus laurocerasus AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus persica AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Pyrus communis AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Rosa chinensis AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Sorbus aucuparia AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Rubiaceae Gardenia jasminoides AGB=0.1245*DAP^2.4163 Hung et al. 2012			, , , , , , , , , , , , , , , , , , , ,	• •
Prunus cerasifera AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus domestica AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus laurocerasus AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus persica AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Pyrus communis AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Rosa chinensis AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Sorbus aucuparia AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Rubiaceae Gardenia jasminoides AGB=0.1245*DAP^2.4163 Hung et al. 2012		3		
Prunus domestica AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus laurocerasus AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus persica AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Pyrus communis AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Rosa chinensis AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Sorbus aucuparia AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Rubiaceae Gardenia jasminoides AGB=0.1245*DAP^2.4163 Hung et al. 2012			, , , , , , , , , , , , , , , , , , , ,	
Prunus laurocerasus Prunus persica AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Prunus persica AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Pyrus communis AGB=EXP(-2.9255+2.4109*LN(DAP)) Rosa chinensis AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Rubiaceae Gardenia jasminoides AGB=0.1245*DAP^2.4163 Hung et al. 2012			, , , , , , , , , , , , , , , , , , , ,	• •
Prunus persica AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Pyrus communis AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Rosa chinensis AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Sorbus aucuparia AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Rubiaceae Gardenia jasminoides AGB=0.1245*DAP^2.4163 Hung et al. 2012			, , , , , , , , , , , , , , , , , , , ,	
Pyrus communis Rosa chinensis AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Rubiaceae Gardenia jasminoides AGB=0.1245*DAP^2.4163 Hung et al. 2012			, , , , , , , , , , , , , , , , , , , ,	• •
Rosa chinensis AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Sorbus aucuparia AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Rubiaceae Gardenia jasminoides AGB=0.1245*DAP^2.4163 Hung et al. 2012		· ·	, , , , , , , , , , , , , , , , , , , ,	• •
Sorbus aucuparia AGB=EXP(-2.9255+2.4109*LN(DAP)) Chojnacky et al. 2014 Rubiaceae Gardenia jasminoides AGB=0.1245*DAP^2.4163 Hung et al. 2012			, , , , , , , , , , , , , , , , , , , ,	
Rubiaceae Gardenia jasminoides AGB=0.1245*DAP^2.4163 Hung et al. 2012				
· · · · · · · · · · · · · · · · · · ·	Rubiaceae			
	-	•		•

Rutaceae	Balfourodendron riedelianum	AGB=0.1245*DAP^2.4163	Hung et al. 2012
	Citrus × aurantium	AGB=0.1245*DAP^2.4163	Hung et al. 2012
	Citrus × sinensis	AGB=0.1245*DAP^2.4163	Hung et al. 2012
	Citrus reticulata	AGB=0.1245*DAP^2.4163	Hung et al. 2012
	Poncirus trifoliata	AGB=0.1245*DAP^2.4163	Hung et al. 2012
	Zanthoxylum coco	AGB=0.1245*DAP^2.4163	Hung et al. 2012
	Zanthoxylum rhoifolium	AGB=0.1245*DAP^2.4163	Hung et al. 2012
Salicaceae	Populus alba	AGB=EXP(-2.4441+2.4561*LN(DAP))	Chojnacky et al. 2014
	Populus alba var stricta	AGB=EXP(-2.4441+2.4561*LN(DAP))	Chojnacky et al. 2014
	Populus deltoides	AGB=EXP(-2.4441+2.4561*LN(DAP))	Chojnacky et al. 2014
	Populus deltoides var stricta	AGB=EXP(-2.4441+2.4561*LN(DAP))	Chojnacky et al. 2014
	Salix × erythroflexuosa	AGB=EXP(-2.4441+2.4561*LN(DAP))	Chojnacky et al. 2014
	Salix babylonica	AGB=EXP(-2.4441+2.4561*LN(DAP))	Chojnacky et al. 2014
	Salix humboldtiana	AGB=EXP(-2.4441+2.4561*LN(DAP))	Chojnacky et al. 2014
	Salix x argentinensis	AGB=EXP(-2.4441+2.4561*LN(DAP))	Chojnacky et al. 2014
Santalaceae	Jodina rhombifolia	AGB=0.1245*DAP^2.4163	Hung et al. 2012
Sapindaceae	Aesculus hippocastanum	AGB=0.1245*DAP^2.4163	Hung et al. 2012
	Cupania vernalis	AGB=0.1245*DAP^2.4163	Hung et al. 2012
	Sapindus saponaria	AGB=0.1245*DAP^2.4163	Hung et al. 2012
Sapotaceae	Chrysophyllum gonocarpum	AGB=0.1245*DAP^2.4163	Hung et al. 2012
	Pouteria salicifolia	AGB=0.1245*DAP^2.4163	Hung et al. 2012
Scrophulariaceae	Myoporum laetum	AGB=0.1245*DAP^2.4163	Hung et al. 2012
Simarubaceae	Ailanthus altissima	AGB=0.1245*DAP^2.4163	Hung et al. 2012
Solanaceae	Nicotiana glauca	AGB=0.1245*DAP^2.4163	Hung et al. 2012
	Solanum granuloso-leprosum	AGB=0.1245*DAP^2.4163	Hung et al. 2012
Strelitziaceae	Strelitzia nicolai	AGB=EXP(-1.996+2.32*LN(DAP))	Brown et al. 1989
Тахасеае	Taxus baccata	AGB=EXP(-2.6327+2.4757*LN(DAP))	Chojnacky et al. 2014
Taxodiaceae	Cryptomeria japonica	AGB=EXP(-3.2007+2.5339*LN(DAP))	Chojnacky et al. 2014
	Taxodium distichum	AGB=EXP(-2.6327+2.4757*LN(DAP))	Chojnacky et al. 2014
Theaceae	Camellia japonica	AGB=0.1245*DAP^2.4163	Hung et al. 2012
Ulmaceae	Ulmus laevis	AGB=EXP(-2.2118+2.4133*LN(DAP))	Chojnacky et al. 2014
	Ulmus parvifolia	AGB=EXP(-2.2118+2.4133*LN(DAP))	Chojnacky et al. 2014
	Ulmus procera	AGB=EXP(-2.2118+2.4133*LN(DAP))	Chojnacky et al. 2014
	Ulmus pumila	AGB=EXP(-2.2118+2.4133*LN(DAP))	Chojnacky et al. 2014
Verbenaceae	Citharexylum montevidense	AGB=0.1245*DAP^2.4163	Hung et al. 2012
Verbenaceae	Duranta erecta	AGB=0.1245*DAP^2.4163	Hung et al. 2012
Vitaceae	Vitis vinifera	AGB=EXP(-1.996+2.32*LN(DAP))	Brown et al. 1989
Zygophyllaceae	Bulnesia retama	AGB=0.1245*DAP^2.4163	Hung et al. 2012
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			0

Todos los modelos seleccionados utilizan al DAP en cm como variable de entrada y la biomasa aérea (AGB) en kg como variable respuesta. DAP: diámetro a 1,30 metros en cm.

En la Tabla 4 se observa el cálculo de crecimiento en DAP para las especies forestales medidas en el Paseo del Bosque, como promedio por especie. Se intentó realizar un modelo de crecimiento en función del DAP pero los modelos presentaron un bajo ajuste y se optó por el promedio. En la misma tabla se observa el crecimiento en DAP asignado para las especies forestales medidas en los predios de la UNLP, en base a los valores del Paseo del Bosque. Si no se encontraron coincidencias en las especies se le asignaba el promedio del género o de la familia botánica. Asimismo se observa el origen exótico o nativo de cada especie en la tabla.

Tabla 4. . Crecimiento en DAP para las especies forestales medidas en el Paseo del Bosque y valor de crecimiento asignado a las especies de la UNLP.

Familia	Sp UNLP	PdB	N/E	C DAP	Sp UNLP	PdB	N/E	C DAP
Aceraceae	A. japonicum		E	0.7702	A. pseudoplatanus		E	0.7702
Aceraceae	A. negundo	Х	E	0.7702	A. sacharinum		Ε	0.7702
Aceraceae	A. palmatum		Ε	0.7702	A. triflorum		Ε	0.7702
Anacardiaceae	C. coggygria		E	0.3848	S. areira		N	0.4654
Anacardiaceae	L. molleoides		N	0.4654	S. terebinthifolia		N	0.4654
Anacardiaceae	S. lorentzii		N	0.4654				
Annonaceae	A. cherimola		E	0.3930	R. emarginata		N	0.3848
Apocinaceae	A. australe		N	0.4654	N. oleander		E	0.3848
Aquifoliaceae	I. aquifolium		E	0.9591				
Araceae	M. deliciosa		N	0.3848	P. bipinnatifidum		N	0.3848
Araliaceae	D. elegantissima		Е	0.4654	S. arboricola		E	0.3848
Araucariaceae	A. angustifolia	Х	N	0.1570	A. bidwilii	Х	E	0.5014
Araucariaceae	A. araucana		N	0.1570	A. heterophylla	Х	Ε	0.6419

Arecaceae Arecaceae Arecaceae	B. capitata	х	N	0.0220	P. canariensis		E	0.0270
Aracacaaa	B. yatay		N	0.0220	S. romanzoffiana	х	N	0.0264
AIELULEUE	C. humilis		Ε	0.4654	T. fortunei	х	Ε	0.0114
Arecaceae	C. alba		N	0.0270	W. filifera		Е	0.0539
Arecaceae	L. chinensis		Е	0.0270	W. robusta	Х	Е	0.0539
Asparagaceae	B. gracilis		E	0.0270	D. fragrans		E	0.0270
Asparagaceae Asparagaceae	C. australis		E	0.0270	Y. elephantipes		E	0.0270
Asteraceae	Q. fulta		N	0.3848	1. cicpitantipes			0.0270
Bignoniaceae	C. bignonioides	х	E	0.2550	J. mimosifolia	Х	N	0.3362
Bignoniaceae Bignoniaceae	H. albus	^	N	0.9591	P. venusta	^	N	0.3848
Bignoniaceae Bignoniaceae	H. impetiginosus		N	0.9591	T. stans		N	0.4654
Boraginaceae	C. alliodora		N	0.4654	S. lanceolatum		N	0.3848
-					3. lanceolatum		IN	0.3646
Boraginaceae	C. americana		N	0.4654				
Brasicaceae -	G. officinale		E _	0.3848				
Вихасеае	B. sempervirens		E	0.4304				
Cactaceae	C. stenogonus		N	0.4654	O. ficus-indica		E	0.3930
Cactaceae	E. atacamensis		N	0.4654				
Cannabaceae	C. australis	Х	Е	0.8349	C. occidentalis	X	E	0.5162
Cannabaceae	C. ehrenbergiana	Х	N	0.1875				
Capparaceae	C. atamisquea		N	0.4654				
Cardiopteridaceae	C. mucronata		Е	0.4304				
Caricaceae	С. рарауа		Е	0.3930				
Casuarinaceae	C. cunninghamiana	х	E	0.4483				
Celastraceae	M. ilicifolia		N	0.4654				
Cephalotaxaceae	C. fortunei		E	0.3650				
Corynocarpaceae	C. laevigatus		E	0.3848				
	C. decurrens		E	0.3557	C compositions was stricts		E	0.1717
Cupressaceae		.,		0.3557	C. sempervirens var stricta	X		
Cupressaceae	C. nootkatensis	Х	E		J. virginiana	X	E 0.3557	0.3374
Cupressaceae	C. arizonica		E	0.2292	S. giganteum	E	0.3557	0.0454
Cupressaceae	C. lusitanica	х	E	0.2814	T. occidentalis		E	0.2154
Cupressaceae	C. macrocarpa	Х	E	0.2292	T. orientalis	Х	Е	0.2154
Cupressaceae	C. sempervirens	Х	Е	0.3792				
Cycadaceae	C. revoluta	Х	Е	0.0211				
Esterculiaceae	F. platanifolia	Х	E	0.4304				
Euphorbiaceae	C. multilobus		Ε	0.3848	S. brasiliensis		N	0.4654
Euphorbiaceae	E. grandicornis		Е	0.4654	S. commersoniana	N	0.4654	
Euphorbiaceae	S. haematospermum		N	0.4654				
Fabaceae	A. melanoxylon	Х	Е	0.2401	N. caldenia		N	0.4654
Fabaceae	A. retinodes		Ε	0.2401	N. nigra		N	0.4654
Fabaceae	A. salicina		Ε	0.2401	P. excelsa		N	0.4654
Fabaceae	A. julibrissin	х	Ε	0.3658	P. rigida		N	0.4654
Fabaceae	A. colubrina	^	N	0.4654	P. aculeata		N	0.3848
Fabaceae	B. forficata	х	N	0.5967	P. dubium		N	0.9591
Fabaceae Fabaceae	C. siliqua	^	E	0.3848	P. nitens		N	0.9591
Fabaceae Fabaceae	C. siliquastrum	х	E	0.3848	R. pseudoacacia	х	E	0.9391
Fabaceae Fabaceae	E. contortisiliquum	^	N	0.0270	S. praecox	^	N	0.2281
rabaceae Fabaceae	•	v	N N		•		N N	
rabaceae Fabaceae	E. crista-galli	Х		0.7615 0.4654	S. spectabilis	v		0.4654
	G. decorticans		N		S. japonicum	X	E 0.4304	0.4304
Fabaceae Fabaceae	G. amorphoides		N	0.4221	S. japonicum var. pendula	E	0.4304	0.000
Fabaceae	G. triacanthos	Х	E	0.2163	T. tipu	Х	N	0.6965
Fabaceae	L. leucocephala		E	0.3848	V. aroma		N	0.0967
Fabaceae	M. balsamum		N	0.9591	V. caven	Х	N	0.0967
Fabaceae	N. alba		N	0.4654	W. sinensis		E	0.3848
Fagaceae	C. sativa		Е	0.3930	Q. robur	Х	E	0.3968
Fagaceae	F. sylvatica		E	0.4304	Q. rubra		E	0.5394
Fagaceae	Q. ilex	х	Ε	0.6677	Q. suber	Х	E	0.5276
Fagaceae	Q. palustris	Х	Ε	0.5657				
	G. biloba	Х	Е	0.2638				
Ginkgoaceae	L. styraciflua		E	0.4304				
			Е	0.3930	J. regia		E	0.3930
Ginkgoaceae Hamamelidaceae Juglandaceae	C. illinoinensis				<u> </u>			
Hamamelidaceae	C. illinoinensis J. australis	х	N	2.6467				
Hamamelidaceae Juglandaceae Juglandaceae	J. australis	Х			N. lanceolata		N	0.9591
Hamamelidaceae Juglandaceae Juglandaceae Lauraceae	J. australis C. camphora		Е	1.5293	N. lanceolata O. acutifolia		N N	0.9591 0.9591
Hamamelidaceae Juglandaceae Juglandaceae Lauraceae Lauraceae	J. australis C. camphora C. glanduliferum	x x	E E	1.5293 1.5293	O. acutifolia		N	0.9591
Hamamelidaceae Juglandaceae Juglandaceae Lauraceae Lauraceae Lauraceae	J. australis C. camphora C. glanduliferum C. iners	х	E E E	1.5293 1.5293 1.5293	O. acutifolia O. puberula		N N	0.9591 0.9591
Hamamelidaceae Juglandaceae Juglandaceae Lauraceae Lauraceae Lauraceae Lauraceae	J. australis C. camphora C. glanduliferum C. iners L. nobilis		E E E	1.5293 1.5293 1.5293 0.2054	O. acutifolia		N	0.9591 0.9591
Hamamelidaceae Juglandaceae Juglandaceae Lauraceae Lauraceae Lauraceae	J. australis C. camphora C. glanduliferum C. iners	х	E E E	1.5293 1.5293 1.5293	O. acutifolia O. puberula		N N	0.9591 0.9591 0.9591 0.3930

Magnoliaceae	L. tulipifera		Ε	0.4304	M. liliiflora		E	1.1976
Magnoliaceae	M. × soulangeana		E	1.1976	M. stellata		E	1.1976
Magnoliaceae	M. grandiflora	Х	E	1.1976				
Malvaceae	B. populneus	Х	E	0.2392	L. divaricata		N	0.4654
Malvaceae	C. chodatii		N	0.3650	T. viridis ssp. ×moltkei	Х	E	0.1803
Malvaceae	C. speciosa	Х	N	0.3650				
Meliaceae	C. lilloi		N	0.9591	M. azedarach	Х	E	0.5269
Menispermaceae	C. laurifolius		E	0.3848				
Moraceae	B. papyrifera		E	0.3848	F. elastica		E	0.4304
Moraceae	F. auriculata		E	0.3930	F. luschnathiana		N	0.9591
Moraceae	F. benjamina		E	0.4304	M. pomifera	Х	E	0.6155
Moraceae	F. carica		Е	0.3930	M. alba	Х	Е	0.2926
Moraceae	F. cyathistipula		E	0.4304	M. nigra	Х	Е	0.2768
Musaceae	M. x paradisiaca		E	0.0270				
Myrtaceae	A. sellowiana		N	0.7702	E. sideroxylon	Х	Е	0.2140
Myrtaceae	B. salicifolius		N	0.9591	E. tereticornis	Х	E	0.2030
Myrtaceae	C. citrinus		E	0.4304	E. lilloana		N	0.9591
Myrtaceae	C. salignus		E	0.4304	E. pungens		N	0.3930
Myrtaceae	E. camaldulensis	х	E	0.2324	E. uniflora		N	0.3930
Myrtaceae	E. cinerea		E	0.3145	H. edulis		N	0.4654
Myrtaceae	E. citriodora		Е	0.3145	P. rivularis		N	0.3848
Myrtaceae	E. globulus	Х	E	0.4363	P. guajava		E	0.3848
Nyctaginaceae	B. stipitata		N	0.1875				
Oleaceae	F. excelsior	x	Ε	0.1917	L. lucidum	х	Ε	0.1706
Oleaceae	F. ornus	Х	Ε	0.0725	O. europaea		E	0.3930
Oleaceae	F. pennsylvanica	Х	Ε	0.3331				
Papaveraceae	B. arborea		E	0.2401				
Paulowniaceae	P. tomentosa		E,	0.4304				
Phytolaccaceae	P. dioica	х	N	1.0102				
Pinaceae	A. alba		Е	0.3557	P. elliottii	х	Е	0.1266
Pinaceae	C. atlantica	х	Ε	0.2462	P. halepensis	х	Ε	0.2444
Pinaceae	C. deodara	х	Ε	0.9145	P. pinaster	х	Ε	0.2814
Pinaceae	C. libani		Ε	0.5803	P. pinea	х	Ε	0.3880
Pinaceae	P. abies		Ε	0.3557	P. sylvestris		Ε	0.2601
Pinaceae	P. canariensis		Ε	0.3557	P. thunbergii		Ε	0.2601
Pittosporaceae	P. tobira		Е	0.3930				
Platanaceae	P. × acerifolia	Х	E	0.5487	P. occidentalis		Е	0.5487
Podocarpaceae	P. parlatorei		N N	0.3557				0.0.07
Polygonaceae	R. laxiflora		N	0.4654				
Primulaceae	M. laetevirens		N	0.4654				
Proteaceae	G. robusta		E	0.4748				
	H. dulcis	X	E	0.4748	Z. mistol		N	0.4654
Rhamnaceae		Х			Z. Mistoi		IN	0.4054
Rhamnaceae	S. buxifolia		N	0.4654	D. de continu			0.2020
Rosaceae	C. laevigata		E	0.3930	P. domestica		E	0.3930
Rosaceae	C. oblonga		E	0.4654	P. laurocerasus		E	0.3930
Rosaceae	E. japonica		E	0.3930	P. persica		E	0.3930
Rosaceae	M. domestica		E	0.3930	P. communis	Х	E	0.2525
Rosaceae	P. glabra	Х	E	0.3936	R. chinensis		E	0.3930
Rosaceae	P. armeniaca		E	0.3930	S. aucuparia		Е	0.3848
Rosaceae	P. cerasifera		E	0.3930				
Rubiaceae	G. jasminoides		E	0.3848	R. armata		N	0.3848
Rutaceae	B. riedelianum		N	0.4654	P. trifoliata		E	0.4654
	C. × aurantium		E	0.3930	Z. coco		N	0.4654
			Ε	0.3930	Z. rhoifolium		N	0.4654
Rutaceae Rutaceae	C. × sinensis							
Rutaceae Rutaceae	C. × sinensis C. reticulata		E	0.3930				
Rutaceae Rutaceae	C. × sinensis	х	E E		S. × erythroflexuosa		E	0.6581
Rutaceae	C. × sinensis C. reticulata	х	E E E	0.3930	S. × erythroflexuosa S. babylonica		E E	
Rutaceae Rutaceae Salicaceae Salicaceae	C. × sinensis C. reticulata P. alba	x x	E E E	0.3930 0.7188	S. babylonica S. humboldtiana			0.6581 0.6581
Rutaceae Rutaceae Salicaceae Salicaceae Salicaceae	C. × sinensis C. reticulata P. alba P. alba var stricta		E E E	0.3930 0.7188 0.7188	S. babylonica		E	0.6581 0.6581
Rutaceae Rutaceae Salicaceae	C. × sinensis C. reticulata P. alba P. alba var stricta P. deltoides		E E E	0.3930 0.7188 0.7188 0.6581	S. babylonica S. humboldtiana		E N	0.6581 0.6581
Rutaceae Rutaceae Salicaceae Salicaceae Salicaceae Salicaceae Santalaceae	C. × sinensis C. reticulata P. alba P. alba var stricta P. deltoides P. deltoides var stricta		E E E E	0.3930 0.7188 0.7188 0.6581 0.6581	S. babylonica S. humboldtiana		E N	0.6581 0.6581 0.6581
Rutaceae Rutaceae Salicaceae Salicaceae Salicaceae Salicaceae Santalaceae Sapindaceae	C. × sinensis C. reticulata P. alba P. alba var stricta P. deltoides P. deltoides var stricta J. rhombifolia		E E E E N	0.3930 0.7188 0.7188 0.6581 0.6581 0.4654	S. babylonica S. humboldtiana S. x argentinensis		E N N	0.6581 0.6581 0.6581
Rutaceae Rutaceae Salicaceae Salicaceae Salicaceae Salicaceae	C. × sinensis C. reticulata P. alba P. alba var stricta P. deltoides P. deltoides var stricta J. rhombifolia A. hippocastanum		E E E E N	0.3930 0.7188 0.7188 0.6581 0.6581 0.4654 0.3930	S. babylonica S. humboldtiana S. x argentinensis		E N N	0.6581 0.6581 0.6581 0.4654
Rutaceae Rutaceae Salicaceae Salicaceae Salicaceae Salicaceae Santalaceae Sapindaceae Sapindaceae	C. × sinensis C. reticulata P. alba P. alba var stricta P. deltoides P. deltoides var stricta J. rhombifolia A. hippocastanum C. vernalis C. gonocarpum	х	E E E E N E N	0.3930 0.7188 0.7188 0.6581 0.6581 0.4654 0.3930 0.4654 0.4654	S. babylonica S. humboldtiana S. x argentinensis S. saponaria		E N N	0.6581 0.6581 0.6581 0.4654
Rutaceae Rutaceae Salicaceae Salicaceae Salicaceae Salicaceae Santalaceae Sapindaceae Sapindaceae Sapotaceae	C. × sinensis C. reticulata P. alba P. alba var stricta P. deltoides P. deltoides var stricta J. rhombifolia A. hippocastanum C. vernalis C. gonocarpum M. laetum	x	E E E E N E N	0.3930 0.7188 0.7188 0.6581 0.6581 0.4654 0.3930 0.4654 0.4654 0.7018	S. babylonica S. humboldtiana S. x argentinensis S. saponaria		E N N	0.6581 0.6581 0.6581 0.4654
Rutaceae Rutaceae Salicaceae Salicaceae Salicaceae Salicaceae Santalaceae Sapindaceae Sapindaceae	C. × sinensis C. reticulata P. alba P. alba var stricta P. deltoides P. deltoides var stricta J. rhombifolia A. hippocastanum C. vernalis C. gonocarpum	х	E E E E N E N	0.3930 0.7188 0.7188 0.6581 0.6581 0.4654 0.3930 0.4654 0.4654	S. babylonica S. humboldtiana S. x argentinensis S. saponaria		E N N	0.6581 0.6581 0.6581 0.6581 0.4654 0.4654

Тахасеае	T. baccata	E	0.3557				
Taxodiaceae	C. japonica	E	0.3557	T. distichum		E	0.3557
Theaceae	C. japonica	E	0.3930				
Ulmaceae	U. laevis	E	0.6623	U. procera	х	Е	0.3561
Ulmaceae	U. parvifolia	E	0.6623	U. pumila	x	E	0.6623
Verbenaceae	C. montevidense	N	0.4654	D. erecta		N	0.4654
Vitaceae	V. vinifera	E	0.3930				
Zygophyllaceae	B. retama	N	0.4654				

Sp UNLP: especie forestal presente en el inventario del presente estudio, PdB: especie forestal medida en el inventario del Paseo del Bosque, La Plata, N: especie nativa; E: especie exótica, C DAP: Crecimiento en DAP en cm.año-1.

Estimación del CO2eq para la Reserva del Valle del Arroyo Cuña Pirú

Para la Reserva del Valle del Arroyo Cuña Pirú, se utilizó el trabajo de Taurian et al. 2005 "Estructura forestal de la reserva privada Cuña Pirú, Provincia de Misiones, Argentina." en donde describe 2 estructuras forestales en la reserva. El distrito de los campos, la Selva degradada y la Selva conservada. Con ayuda del GIS se determinaron las superficies de cada una de las zonas (301.7 ha para el distrito de los campos, 2594.62 ha para la Selva degradada y 1930.88 ha para la Selva conservada). Con los datos de DAP promedio (14.45 cm para el distrito de los campos, 24.90 cm para la Selva degradada y 35.11 cm para la Selva conservada) y densidad de árboles mayores a 10 cm DAP (177.72 n.ha⁻¹ para el distrito de los campos, 157.28 n.ha⁻¹ para la Selva degradada y 231.91 n.ha⁻¹ para la Selva conservada), y el dato crecimiento diametral promedio de todas las especies de la Tabla 1 (0.419265299 cm.año⁻¹), el modelo de biomasa aérea para *Handroanthus impetiginosus* (B Kg) = 0.1959*DAP(cm)^2.1206 por Sáenz et al. 2021), la relación parte aérea/raíces (0.2), fracción Carbono (0.47) y relación CO₂/Carbono (3.6667) se realizó la estimación del CO₂eq.

5. RESULTADOS

Resultados por dependencia

Los resultados se observan en la Tabla 5, mostrando una gran diferencia entre dependencias con respecto a la fijación de CO₂. Se observa una baja proporción de especies nativas existentes (92 de un total de 259 especies) y un menor aporte de estas en el CO₂eq (132.5 Mg de un total de 5.176.7 Mg). Llama la atención la gran riqueza de especies forestales que posee la UNLP y su muy buen estado de conservación. El valor total de la huella de carbono de la UNLP para el año 2019 fue de 8647.71 Mg de CO₂eq, lo que resulta 3470.93 Mg de CO₂eq que no son fijados por los árboles de la UNLP. Sin embargo, si se contabiliza la Reserva del Valle del Arroyo Cuña Pirú, el valor fijado alcanza los 19537.95 Mg de CO₂eq, excediendo la Huella de carbono institucional.

Tabla 5. Riqueza en familias botánicas, especies según su origen, DAP, elevación y fijación de carbono por dependencia de la UNLP.

Dependencia	F	R	RN	RE	DAP	DAP Max	msnm	CO₂e	CO ₂ e N	CO₂e E
01	4	4	0	4	24.5	55.4	66.0	3238.026	0	3238.026
02	15	26	6	20	34.2	162.3	7.1	52.592	1.504	51.088
03	18	30	4	26	23.1	127.7	34.1	95.145	9.563	85.582
04	2	2	0	2	12.7	15.9	23.6	0.006	0	0.006
05	2	2	2	0	55.0	80.0	10.6	0.901	0.901	0
06	3	3	1	2	47.7	90.7	30.3	0.388	0.004	0.384
07	5	5	1	4	30.3	71.9	17.3	1404.893	6.557	1398.336
08	8	10	1	9	33.5	128.3	12.4	0.725	0.339	0.386
09	1	1	0	1	27.7	27.7	5.8	0.019	0	0.019
10	28	61	17	44	34.8	240.6	1043.1	43.695	24.500	19.195
11	38	79	14	65	39.3	158.2	20.5	50.081	7.110	42.971
12	9	11	5	6	33.0	81.6	21.2	1.325	0.605	0.720
13	65	199	77	122	37.0	207.1	19.0	86.631	37.240	49.391
14	26	47	24	23	25.3	120.5	13.6	7.622	2.544	5.079
15	5	7	3	4	35.1	85.3	25.5	0.935	0.122	0.812
16	15	24	9	15	24.1	99.9	14.1	31.386	1.359	30.027
17	33	69	19	50	52.3	137.2	26.8	57.990	28.871	29.120
18	10	11	1	10	38.8	105.0	27.1	1.700	0.018	1.682

19	0	0	0	0				0	0	0
20	0	0	0	0				0	0	0
21	0	0	0	0				0	0	0
22	0	0	0	0				0	0	0
23	0	0	0	0				0	0	0
24	0	0	0	0				0	0	0
25	0	0	0	0				0	0	0
26	0	0	0	0				0	0	0
27	2	2	1	1	35.8	48.2	17.3	0.527	0.411	0.116
28	0	0	0	0				0	0	0
29	0	0	0	0				0	0	0
30	0	0	0	0				0	0	0
31	0	0	0	0				0	0	0
32	5	5	0	5	67.7	136.0	31.3	0.757	0	0.757
33	8	8	3	5	56.2	113.0	21.3	1.177	0.309	0.868
34	10	13	2	11	51.8	142.1	30.9	1.762	0.383	1.379
35	9	9	4	5	60.7	166.0	27.1	1.360	0.250	1.110
36	0	0	0	0				0	0	0
37	0	0	0	0				0	0	0
38	0	0	0	0				0	0	0
39	0	0	0	0				0	0	0
40	8	9	3	6	28.0	74.2	19.6	6.339	5.199	1.139
41	5	7	1	6	37.1	96.3	23.4	87.742	4.760	82.983
42	2	2	0	2	35.2	45.8	47.5	0.047	0	0.047
43								14361.181		
Total 1-42	75	259	92	167	35.1	240.6	143.7	5176.771	132.549	5041.222
Total 1-43								19537.952		

F: Riqueza de Familia Botánica; R: Riqueza en número de especies, N: Especies nativas; E: Especies exóticas; DAP: Diámetro normal a 1.3 m en cm como promedio: DAP Máx: Máximo DAP de la Dependencia de la UNLP analizada: msnm: elevación en metros sobre el nivel del mar en promedio por árbol medido; CO2e: Dióxido de carbono equivalente fijado en Mg por año; Límite físico: Dependencias de la UNLP: 01: Colegio Agropecuario Inchausti; 02: Facultad de Ciencias Agrarias / Presidencia – Campo "6 de Agosto"; 03: Facultad de Ciencias Agrarias y Presidencia – Estación Experimental J. Hirschhörn; 04: Facultad de Ciencias Veterinarias, Centro de Investigaciones Veterinarias - CEDIVE; 05: Facultad de Informática - Programa E-Basura; 06: Facultad de Ingeniería -Instituto Malvinas de Políticas Soberanas; 07: Facultad de Cs Agrarias y Veterinarias - Santa Catalina; 08: Presidencia - Albergue Estudiantil UNLP; 09: Presidencia – ex Hospital de los Trabajadores de la Carne; 10: Presidencia – Museo y Finca "Samay Huasi"; 11: GBC – Grupo bosque centro – Facultades de Cs Astronómicas, Planetario y Jardín Maternal; 12: GBC – Grupo bosque centro – Museo de Ciencias Naturales; 13: GBE – Grupo bosque este – Parcela A; 14: GBE – Grupo bosque este – Parcela B 15: GBE – Grupo bosque este – Parcela C / ex predio Autoridad del Agua; 16: GBN – Grupo bosque norte; 17: GBO – Grupo bosque oeste – Parcela A; 18: GBO - Grupo bosque oeste - Parcela B; 19: GBU - Grupo urbano centro - Facultad de Bellas Artes - Edificio anexo; 20: GBU - Grupo urbano centro - Facultad de Bellas Artes - Edificio anexo calle 8; 21: GBU - Grupo urbano centro - Facultad de Ciencias Económicas - Hotel escuela; 22: GBU - Grupo urbano centro - Facultad de Ciencias Jurídicas y Sociales - Edificio anexo Biblioteca; 23: GBU -Grupo urbano centro - Facultad de Ciencias Jurídicas y Sociales - Edificio anexo Postgrado; 24: GBU - Grupo urbano centro -Facultad de Ciencias Jurídicas y Sociales – Edificio Reforma; 25: GBU – Grupo urbano centro – Facultad de Ciencias Médicas – Edificio Anexo; 26: GBU - Grupo urbano centro - Facultad de Ciencias Naturales - Edificio Anexo; 27: GBU - Grupo urbano centro - Facultad de Ciencias Naturales - Instituto Spegazzini; 28: GBU - Grupo urbano centro - Facultad de Humanidades - Edificio Anexo - Escuela de Lenguas; 29: GBU - Grupo urbano centro - Facultad de Humanidades - Edificio Anexo - PEPAM; 30: GBU - Grupo urbano centro – Facultad de Periodismo –Edificio Anexo; 31: GBU – Grupo urbano centro – Facultad de Psicología – Edificio Anexo – Ex CEPAVE; 32: GBU - Grupo urbano centro - Manzana Edificio Plaza Rocha - Facultad de Bellas Artes y Biblioteca Central; 33: GBU - Grupo urbano centro - Manzana Ex Distrito - Facultades de Bellas artes y Trabajo social y Bachillerato de Bellas Artes; 34: GBU - Grupo urbano centro – Manzana Liceo V Mercante; 35: GBU – Grupo urbano centro – Manzana Presidencia, Edificio Karakachoff y Facultad de CS Económicas; 36: GBU – Grupo urbano centro – Presidencia, Edificio Dirección de Servicios Sociales; 37: GBU – Grupo urbano centro - Presidencia, Edificio Anexo CESPI; 38: GBU - Grupo urbano centro - Presidencia, Edificio de la Editorial; 39: GBU - Grupo urbano centro – Presidencia, Edificio Taller de teatro y Coro Universitario; 40: Facultad de Ciencias Agrarias y Forestales Establecimiento Don Joaquín; 41: Facultad de Ciencias Agrarias y Forestales – Establecimiento El Amanecer; 42: GBU – Grupo urbano centro - Presidencia - Museo Azzarini; 43: Reserva del Valle del Arroyo Cuña Pirú.

Resultados por especie

En la Tabla 6 se observa la cantidad de árboles presentes en la UNLP discriminados por especie. De los 6600 árboles medidos para este trabajo, un 0.85% (56 ejemplares) corresponden a la especie *Quercus robur*, el símbolo de

Dirección de Seguridad, Higiene y Desarrollo Sustentable Dirección General de Construcciones y Mantenimiento SECRETARÍA DE PLANEAMIENTO, OBRAS Y SERVICIOS DIRECCIÓN GENERAL DE UNIVERSIDAD NACIONAL DE LA PLATA

la UNLP, mientras que el 28.08% (1853 árboles) corresponden a *Casuarina cunninghamiana*. Los diámetros promedio, así como la biomasa y los CO_2 eq y CO_2 eq anual presentan diferencias de tamaño marcadas por especie. Esto es ya que existieron modas donde se plantaron algunas especies, como por ejemplo el caso de *Fraxinus sp.: Fraxinus excelsior* (DAP 49.5 cm), *Fraxinus ornus* (DAP 44.6 cm) y *Fraxinus pennsylvanica* (26.7 cm DAP), este último ampliamente plantado en la actualidad.

Tabla 6. Valores de cantidad, DAP, biomasa, CO2eq total y anual para las especies presentes en las dependencias de la UNLP.

Especies	n	DAP	DAP M	B	B M	CO₂eq	CO₂eq M	CO₂eq A	CO₂eq AM
Abies alba	2	70.1	82.8	2058.6	2948.0	4257.2	6096.5	52.0	66.2
Acacia melanoxylon	13	48.0	74.5	1820.5	4151.4	3764.8	8585.1	37.7	66.7
Acacia retinodes	2	39.0	39.4	871.7	890.6	1802.8	1841.8	26.7	27.0
Acacia salicina	1	37.6	37.6	797.9	797.9	1650.1	1650.1	25.3	25.3
Acca sellowiana	8	17.4	26.6	114.2	180.4	236.2	373.1	11.5	11.5
Acer japonicum	2	14.6	18.1	85.2	129.8	176.2	268.4	19.8	26.4
Acer negundo	53	39.1	109.2	1398.1	9383.8	2891.4	19405.8	85.8	324.9
Acer palmatum	1	13.7	13.7	65.9	65.9	136.3	136.3	17.6	17.6
Acer pseudoplatanus	2	49.4	58.1	1490.0	2086.1	3081.3	4314.0	108.7	135.1
Acer sacharinum	1	131.2	131.2	14546.3	14546.3	30081.8	30081.8	419.5	419.5
Acer triflorum	1	10.4	10.4	34.7	34.7	71.8	71.8	12.0	12.0
Ailanthus altissima	12	31.3	89.4	1191.0	6467.2	2462.9	13374.1	24.1	90.9
Albizia julibrissin	4	15.1	18.0	89.7	134.1	185.5	277.3	10.5	13.4
Anadenanthera colubrina	3	26.4	34.1	390.0	627.3	806.5	1297.3	30.4	42.4
Annona cherimola	3	15.2	20.3	44.7	81.7	92.4	169.0	5.4	8.3
Araucaria angustifolia	23	45.5	160.9	2726.5	32721.4	5638.3	67667.9	27.0	174.5
Araucaria araucana	1	27.2	27.2	294.9	294.9	609.9	609.9	9.3	9.3
Araucaria bidwilii	6	70.7	137.2	7045.1	21457.5	14569.2	44374.0	174.4	427.9
Araucaria heterophylla	2	87.5	91.7	6550.5	7382.7	13546.5	15267.5	260.6	281.3
Aspidosperma australe	2	31.3	45.2	349.9	644.3	723.6	1332.4	21.4	35.1
B. riedelianum	1	11.9	11.9	49.8	49.8	103.0	103.0	9.4	9.4
Bauhinia forficata	32	15.2	40.4	123.1	993.1	254.6	2053.7	18.0	76.2
Beaucarnea gracilis	1	24.6	24.6	230.0	230.0	475.5	475.5	1.2	1.2
Blepharocalyx salicifolius	28	27.4	80.0	827.1	5825.0	1710.4	12046.1	82.9	355.4
Bocconia arborea	1	10.7	10.7	38.2	38.2	79.0	79.0	4.2	4.2
Bougainvillea stipitata	12	14.3	18.1	81.2	136.4	167.9	282.1	5.1	7.0
Brachychiton populneus	30	43.3	90.8	1488.0	6714.6	3077.1	13885.8	32.5	88.2
Broussonetia papyrifera	14	25.2	41.3	351.8	1000.5	727.6	2069.0	23.5	46.3
Bulnesia retama	21	14.1	22.8	81.3	236.8	168.0	489.8	12.2	23.9
Butia capitata	5	50.8	76.7	1512.7	3206.6	3128.3	6631.2	2.6	4.4
Butia yatay	17	50.0	57.3	1212.9	1629.3	2508.3	3369.3	2.5	3.0
Buxus sempervirens	19	14.7	26.7	91.1	349.6	188.3	722.9	12.0	27.8
Callistemon citrinus	4	19.5 26.3	25.8	206.4	350.1	426.8	724.0	20.2	29.6 59.7
Callistemon salignus	3	26.3 69.7	41.2 99.3	481.4 3274.2	1122.6	995.5 6771.0	2321.6	32.2 71.9	115.6
Calocedrus decurrens	3 4	13.7	99.3 22.2	3274.2 85.6	6318.6 222.7	177.1	13066.8 460.5		115.6
Camellia japonica	3		20.4			268.5		10.1 16.4	20.4
Capparis atamisquea	1	17.4		129.8	181.2 41.9		374.7	7.2	
Carica papaya Carya illinoinensis	9	11.1 71.5	11.1 136.0	41.9 7744.5	31237.5	86.6 16015.6	86.6	184.1	7.2 487.5
•	33	71.5		2668.7	7414.2		64599.1 15332.5	62.6	487.5 126.1
Castanea sativa	33 1197	29.5	119.1 97.7	668.0	8009.0	5519.0		35.9	
C. cunninghamiana	1197	29.5				1381.4	16562.6		183.0 14.2
Catalpa bignonioides	1		41.5	176.9	529.0	365.8 1362.9	1093.9	7.0	
Cedrela lilloi Cedrus atlantica	22	33.3 48.6	33.3 87.5	659.1 1051.1	659.1 3398.2	2173.7	1362.9 7027.5	95.5 21.9	95.5 50.0
Cedrus deodara Cedrus libani	48 1	75.7	148.3 78.1	6094.9 2549.0	26382.6 2549.0	12604.3 5271.4	54559.2 5271.4	319.0 98.6	885.7 98.6
		78.1							
Ceiba chodatii	7	72.5	124.2	4899.0	14305.5	10131.0	29583.7	101.9	209.5
Ceiba speciosa	64 41	59.9 34.9	125.7	3347.2	14725.3	6921.9	30451.9	79.0	213.1
Celtis australis			162.3	2013.2	27302.8	4163.3	56462.3	97.6	699.1
Celtis ehrenbergiana Celtis occidentalis	147 31	19.4 29.1	60.0 113.6	227.3 861.7	2464.6 11532.4	470.0 1781.9	5096.7 23848.9	8.2 42.5	38.4 260.9
Cephalotaxus fortunei		29.1 19.6						42.5 10.7	260.9 10.7
, ,	1 4		19.6	113.4	113.4	234.5	234.5		
Ceratonia siliqua	4	35.8 10.5	62.9 10.5	1113.5 32.0	3053.3 32.0	2302.7 66.1	6314.3 66.1	45.5 0.4	97.8 0.4
Cercis siliquastrum	9	10.5 35.4	48.2			1564.2	2997.7	45.6	69.5
Cereus stenogonus	1	35.4 24.5		756.4 197.8	1449.6	409.0			
C. nootkatensis Chamaerops humilis	15	12.8	24.5 17.3	197.8 52.6	197.8 101.9	409.0 108.7	409.0 210.7	32.6 8.6	32.6 12.9
C. gonocarpum	3	24.2	39.5	383.5	899.4	793.0	1859.9	27.8	52.5
c. gonocarpum	3	24.2	53.5	303.3	033.4	753.0	1023.3	27.8	32.3

Cinnamomum camphora	19 6	57.0 71.3	207.1 158.4	4074.9 5786.9	42546.7	8426.9 11967.4	87986.5 46065.6	286.7 386.6	1560.1 1066.3
C. glanduliferum Cinnamomum iners	2	71.3 28.2	32.2	358.6	22275.4 477.3	741.5	987.0	90.8	1000.3
C. montevidense	8	24.6	78.9	715.0	4777.5	1478.7	9879.8	31.5	140.2
Citronella mucronata	6	17.1	25.5	132.2	310.7	273.5	642.5	14.9	25.9
Citrus × aurantium	1	23.0	23.0	243.3	243.3	503.1	503.1	20.5	20.5
Citrus × sinensis	3	11.8	13.8	49.6	71.3	102.5	147.4	7.9	9.9
Citrus reticulata	6	12.3	16.2	56.7	104.7	117.3	216.5	8.5	12.4
Cnidoscolus multilobus	1	25.1	25.1	301.4	301.4	623.3	623.3	22.8	22.8
Cocculus laurifolius	3	29.9	59.6	864.8	2420.6	1788.5	5005.7	33.2	77.8
Copernicia alba	4	18.5	21.3	120.6	164.5	249.3	340.3	0.8	1.0
Cordia alliodora	1	10.5	10.5	36.3	36.3	75.1	75.1	7.8	7.8
Cordia americana	5	48.9	90.7	2316.2	6680.5	4789.9	13815.3	77.9	170.7
Cordyline australis	34	17.4	35.3	124.4	530.8	257.2	1097.6	0.8	1.9
Corynocarpus laevigatus	2 2	13.4	14.7	67.2	82.9 38.9	138.9	171.4	9.3	10.6
Cotinus coggygria Crataegus laevigata	4	11.2 30.2	11.5 81.6	37.1 565.8	2182.5	76.7 1170.0	80.5 4513.5	6.0 15.9	6.1 52.2
Cryptomeria japonica	3	30.5	41.4	272.7	509.0	564.0	1052.7	14.7	22.8
Cupania vernalis	1	20.1	20.1	175.8	175.8	363.5	363.5	20.0	20.0
Cupressus arizonica	10	59.4	166.0	3488.0	22539.6	7213.3	46611.8	40.0	159.2
Cupressus Iusitanica	8	51.1	92.0	1640.2	5227.4	3391.9	10810.2	36.4	81.7
Cupressus macrocarpa	2	46.0	59.5	1088.0	1779.3	2250.0	3679.5	24.6	35.0
Cupressus sempervirens	124	47.2	177.9	1767.9	26767.4	3656.1	55355.0	46.0	291.6
C. sempervirens var stricta	45	42.2	106.2	1358.6	7457.4	2809.6	15422.0	18.0	61.7
Cycas revoluta	5	34.3	40.1	509.0	712.2	1052.6	1472.9	1.5	1.8
Cydonia oblonga	26	20.7	34.9	92.7	280.4	191.8	579.8	9.0	18.5
Dizygotheca elegantissima	1	31.2	31.2	507.3	507.3	1049.2	1049.2	37.4	37.4
Dracaena fragrans	2	16.9	19.9	100.6	139.5	208.0	288.5	0.7	0.9
Duranta erecta	1	18.7	18.7	147.7	147.7	305.4	305.4	18.0	18.0
Echinopsis atacamensis	14 41	36.3 41.2	80.2 131.1	931.4 737.1	4970.6 6841.5	1926.1 1524.3	10279.2 14148.1	44.1 53.1	143.5 248.2
E. contortisiliquum Eriobotrya japonica	9	18.8	27.7	69.4	161.5	143.5	333.9	6.6	11.3
Erythrina crista-qalli	41	24.7	71.6	241.9	1591.4	500.1	3290.9	20.9	83.7
Eucalyptus camaldulensis	10	55.1	109.8	3571.4	12791.4	7385.6	26452.6	54.6	138.8
Eucalyptus cinerea	6	59.3	97.4	3781.3	9496.3	7819.6	19638.3	80.4	157.1
Eucalyptus citriodora	2	34.2	52.9	1091.7	2086.0	2257.7	4313.8	36.7	63.4
Eucalyptus globulus	205	50.5	198.3	3144.8	55494.7	6503.4	114763.1	91.2	625.9
Eucalyptus sideroxylon	20	56.9	81.2	3067.2	6038.6	6342.9	12487.9	50.5	81.6
Eucalyptus tereticornis	16	40.6	139.8	2623.4	23294.5	5425.3	48173.0	33.6	173.5
Eugenia lilloana	1	29.5	29.5	490.8	490.8	1014.9	1014.9	79.9	79.9
Eugenia pungens	2	17.6	20.4	141.4	195.1	292.5	403.4	15.4	19.0
Eugenia uniflora	22	25.2	64.6	553.3	3427.7	1144.3	7088.5	29.0	106.6
Euphorbia grandicornis	1 1	29.3	29.3	436.7	436.7	903.0	903.0	34.2	34.2
Fagus sylvatica Ficus auriculata	1	23.0 18.9	23.0 18.9	122.0 151.9	122.0 151.9	252.3 314.2	252.3 314.2	11.6 15.5	11.6 15.5
Ficus benjamina	31	19.2	78.6	306.1	4735.7	633.0	9793.3	19.1	129.0
Ficus carica	8	30.4	50.3	601.3	1608.9	1243.5	3327.1	31.9	62.5
Ficus cyathistipula	1	67.4	67.4	3266.2	3266.2	6754.5	6754.5	103.7	103.7
Ficus elastica	22	45.4	121.3	2086.4	13495.7	4314.6	27909.1	65.4	238.7
Ficus luschnathiana	50	26.5	118.6	887.7	12779.6	1835.8	26428.3	71.2	513.6
Firmiana platanifolia	5	28.9	42.7	529.9	1080.5	1095.9	2234.5	32.5	54.1
Fraxinus excelsior	4	49.5	56.5	2584.0	3471.3	5343.6	7178.6	49.5	59.8
Fraxinus ornus	1	44.6	44.6	1936.1	1936.1	4003.9	4003.9	16.0	16.0
Fraxinus pennsylvanica	265	26.7	95.7	1076.9	12675.3	2226.9	26212.5	39.7	224.0
Gardenia jasminoides	2	20.3	27.2	215.4	364.9	445.4	754.5	17.4	25.5
Geoffroea decorticans	1	15.6	15.6	40.3	40.3	83.4	83.4	5.9	5.9
Ginkgo biloba Gleditsia amorphoides	34 1	32.2	74.7	875.4 1073.1	4181.5	1810.3	8647.3	24.4	73.6
Gleditsia triacanthos	30	60.8 42.3	60.8 82.3	1072.1 621.5	1072.1 2221.7	2217.1 1285.2	2217.1 4594.5	36.9 12.1	36.9 29.1
Grevillea robusta	17	46.5	117.3	2868.3	15075.5	5931.6	31176.2	91.3	312.4
Guaiacum officinale	5	28.5	39.7	473.0	909.9	978.2	1881.7	28.1	43.7
Handroanthus albus	1	14.0	14.0	52.8	52.8	109.3	109.3	15.3	15.3
H. impetiginosus	64	20.2	63.4	149.3	1297.7	308.8	2683.7	23.6	85.4
Hexachlamys edulis	18	21.8	94.1	575.7	7315.2	1190.5	15127.8	26.4	180.1
Hovenia dulcis	5	48.3	62.0	1267.6	2156.7	2621.4	4460.0	33.7	46.8
Ilex aquifolium	1	15.3	15.3	91.3	91.3	188.9	188.9	27.3	27.3
Jacaranda mimosifolia	213	28.6	83.9	317.4	2351.2	656.5	4862.2	12.5	41.2
Jodina rhombifolia	3	12.6	13.6	58.0	67.8	119.9	140.2	10.3	11.3
Juglans australis	26	36.5	89.3	2078.9	10392.4	4299.2	21491.6	459.5	1627.3

UNIVERSIDAD NACIONAL DE LA PLATA

lualans raaia	го	17.3	36.4	196.3	994.9	406.0	2057.4	18.5	57.6
Juglans regia	58 12		29.0	94.7	299.1	406.0 195.9			17.7
Juniperus virginiana		17.0					618.6	8.3	
Lagerstroemia indica	15	17.0	36.3	147.7	731.1	305.5	1512.0	15.1	43.0
Laurus nobilis	97	20.0	42.1	188.2	912.9	389.1	1887.8	8.0	22.1
Leucaena leucocephala	1	13.9	13.9	30.4	30.4	63.0	63.0	4.1	4.1
Ligustrum lucidum	159	28.6	87.5	609.4	4859.2	1260.3	10048.8	11.1	46.0
Liquidambar styraciflua	7	37.8	87.7	1416.4	6336.8	2929.0	13104.5	51.6	163.2
Liriodendron tulipifera	5	35.2	57.0	851.6	1927.9	1761.2	3986.9	39.7	74.8
Lithraea molleoides	6	32.5	52.9	586.3	1354.0	1212.5	2800.1	31.2	56.8
Livistona chinensis	3	25.0	29.7	244.4	355.6	505.3	735.4	1.2	1.5
Luehea divaricata	10	22.8	63.6	455.2	2840.3	941.4	5873.7	26.8	103.3
Maclura pomifera	1	61.0	61.0	2566.9	2566.9	5308.3	5308.3	128.5	128.5
Magnolia × soulangeana	1	15.2	15.2	71.1	71.1	147.1	147.1	27.2	27.2
Magnolia grandiflora	17	45.8	153.7	2328.2	23018.6	4814.8	47602.4	170.5	922.0
Magnolia liliiflora	2	11.7	12.4	37.3	42.5	77.0	87.9	18.1	19.7
Magnolia stellata	3	10.3	10.3	26.5	27.0	54.8	55.7	14.6	14.8
Malus domestica	2	14.5	17.9	36.8	55.9	76.1	115.6	4.5	6.0
Melia azedarach	35	36.0	93.4	1263.0	7172.5	2611.8	14832.8	58.2	201.5
Monstera deliciosa	3	14.6	14.6	68.8	68.8	142.2	142.2	8.5	8.5
Monteverdia ilicifolia	1	23.4	23.4	253.2	253.2	523.6	523.6	24.8	24.8
Morus alba	133	22.2	75.8	359.5	4333.8	743.5	8962.3	15.8	83.4
Morus nigra	143	24.6	73.8 77.7	456.2	4597.9	943.4	9508.4	17.3	81.7
•	21	13.4	17.9	57.8			226.3		0.8
Musa x paradisiaca					109.4	119.6		0.5	
Myoporum laetum	16	13.3	17.8	67.4	131.2	139.3	271.4	16.5	25.1
Myroxylon balsamum	1	28.9	28.9	179.0	179.0	370.1	370.1	28.9	28.9
Myrsine laetevirens	7	15.3	22.7	102.7	235.2	212.4	486.5	13.8	23.8
Nectandra angustifolia	4	23.9	36.8	293.1	659.3	606.1	1363.5	47.4	84.1
Nectandra lanceolata	1	60.3	60.3	2163.2	2163.2	4473.6	4473.6	169.9	169.9
Neltuma alba	38	33.8	71.0	342.8	1557.5	708.8	3220.9	18.6	50.7
Neltuma caldenia	7	18.0	28.7	64.6	176.1	133.5	364.3	7.4	14.1
Neltuma nigra	117	23.1	109.5	183.4	4428.8	379.4	9158.7	11.3	93.6
Nerium oleander	1	15.9	15.9	43.8	43.8	90.5	90.5	5.5	5.5
Nicotiana glauca	1	12.6	12.6	56.8	56.8	117.5	117.5	10.2	10.2
Ocotea acutifolia	3	15.9	18.2	88.7	119.9	183.4	248.0	25.2	30.4
Ocotea puberula	2	25.8	26.8	279.2	306.2	577.4	633.2	50.4	53.3
Olea europaea	43	27.6	70.7	457.0	2936.6	945.1	6072.8	23.3	79.2
Opuntia ficus-indica	19	19.6	32.8	187.0	572.2	386.6	1183.2	16.7	34.0
Parapiptadenia excelsa	1	35.4	35.4	291.6	291.6	603.0	603.0	18.9	18.9
Parapiptadenia rigida	34	52.3	153.2	1282.9	9952.4	2653.0	20581.6	36.5	150.4
Parkinsonia aculeata	32	18.4	35.2	75.3	286.6	155.7	592.6	6.4	15.5
Paulownia tomentosa	6	66.4	82.3	3275.3	5296.0	6773.4	10952.1	102.2	137.8
Peltophorum dubium	8	28.5	57.6	260.6	941.7	539.0	1947.5	30.6	77.2
Persea americana	17	33.3	64.2	718.8	2521.2	1486.5	5213.8	32.2	76.7
P. bipinnatifidum	5	45.0	45.0	930.3	930.3	1923.8	1923.8	37.9	37.9
Phoenix canariensis	89	74.5	139.4	3384.5	12822.7	6999.1	26517.4	5.3	11.9
Photinia glabra	21	13.9	31.0	36.2	210.9	74.9	436.1	4.3	13.2
Phytolacca dioica	102	34.7	113.8	1113.7	11571.4	2303.2	23929.7	103.2	510.1
Picea abies	6	43.8	67.5	842.4	1757.6	1742.1	3634.8	27.3	48.4
Pinus canariensis	15	63.2	100.6	1740.8	4832.6	3600.0	9993.9	45.4	89.3
Pinus elliottii	9	43.4	75.4	681.2	2331.3	1408.7	4821.2	9.1	20.5
Pinus halepensis	4	72.2	106.0	2432.6	5518.8	5030.6	11412.9	38.1	66.6
Pinus pinaster	2	47.5	61.3	840.9	1378.2	1738.9	2850.1	23.1	33.0
	2								
Pinus pinea		55.6	64.0	1123.2	1535.7	2322.7	3175.7	39.5	48.6
Pinus sylvestris	6	43.6	66.4	725.7	1689.1	1500.7	3493.1	19.1	34.6
Pinus thunbergii	1	63.2	63.2	1489.6	1489.6	3080.5	3080.5	32.0	32.0
Pittosporum tobira	63	16.5	46.8	141.6	1349.2	292.9	2790.2	13.3	56.3
Platanus × acerifolia	124	75.2	142.7	4370.4	17334.9	9037.9	35848.5	138.2	331.7
Platanus occidentalis	6	33.2	85.4	1013.2	5023.8	2095.3	10389.3	47.1	160.3
Plinia rivularis	4	31.9	47.1	680.1	1564.0	1406.5	3234.3	37.4	65.2
Podocarpus parlatorei	8	32.2	45.2	332.1	636.7	686.7	1316.6	16.3	26.1
Poncirus trifoliata	6	11.7	13.4	47.5	65.5	98.2	135.4	9.1	11.1
Populus alba	18	23.3	45.8	249.7	1043.9	516.3	2158.7	31.8	82.2
Populus alba var stricta	41	31.8	70.7	619.1	3022.5	1280.3	6250.6	51.7	155.0
Populus deltoides	202	41.4	164.6	1562.7	24127.2	3231.7	49895.1	74.2	488.5
P. deltoides var stricta	73	34.1	67.4	672.6	2686.5	1391.0	5555.7	51.8	132.4
Pouteria salicifolia	2	11.1	11.2	41.7	42.7	86.3	88.4	8.5	8.6
Prunus armeniaca	27	20.0	35.0	88.6	283.5	183.3	586.2	7.3	15.7
Prunus cerasifera	2	13.7	17.0	32.3	49.6	66.7	102.7	4.2	5.6
Prunus domestica	27	14.8	28.3	41.7	170.1	86.2	351.7	4.7	11.7

Dirección de Seguridad, Higiene y Desarrollo Sustentable Dirección General de Construcciones y Mantenimiento SECRETARÍA DE PLANEAMIENTO, OBRAS Y SERVICIOS

Prunus laurocerasus	12	15.8	29.1	48.1	181.8	99.5	376.0	5.2	12.1
Prunus persica	12	14.5	28.0	43.2	165.5	89.4	342.3	3.2 4.7	11.5
Psidium quajava	5	16.0	31.1	155.3	556.2	321.1	1150.3	13.9	35.1
Pterogyne nitens	8	28.1	53.0	232.6	768.9	481.0	1590.1	29.5	68.5
Pyrostegia venusta	3	12.7	15.6	44.4	66.4	91.9	137.3	5.6	7.1
Pyrus communis	16	16.3	31.5	53.7	219.9	111.0	454.7	3.5	8.7
Quechualia-fulta	1	10.2	10.2	33.9	33.9	70.2	70.2	6.2	6.2
Quercus ilex	3	49.2	67.2	1741.0	3140.4	3600.3	6494.4	103.0	156.3
Quercus palustris	1	37.3	37.3	654.8	654.8	1354.1	1354.1	47.8	47.8
Quercus robur	52	50.5	188.0	2281.0	29340.6	4717.1	60676.4	55.3	300.8
Quercus rubra	3	66.7	127.7	4647.7	11807.8	9611.5	24418.6	113.3	242.0
Quercus suber	3	78.8	95.9	4931.3	7475.6	10197.9	15459.6	157.6	206.8
Randia armata	1	24.4	24.4	280.6	280.6	580.3	580.3	21.9	21.9
Robinia pseudoacacia	109	31.1	74.1	291.2	1729.4	602.2	3576.5	8.2	26.5
Rollinia emarginata	2	33.0	34.7	288.3	326.4	596.1	675.0	17.7	19.1
Rosa chinensis	2	10.4	10.7	15.1	16.4	31.3	33.8	2.8	2.9
Ruprechtia laxiflora	2	52.0	65.0	1933.5	2993.7	3998.5	6191.0	79.0	106.5
Saccelium lanceolatum	1	96.2	96.2	7703.6	7703.6	15931.1	15931.1	153.6	153.6
Salix × erythroflexuosa	2	20.1	27.5	171.3	298.5	354.3	617.4	23.4	35.6
Salix babylonica	1	29.1	29.1	342.7	342.7	708.7	708.7	38.7	38.7
Salix humboldtiana	40	28.6	71.7	574.2	3137.5	1187.4	6488.3	42.5	145.2
Salix x argentinensis	1	128.3	128.3	13073.2	13073.2	27035.3	27035.3	339.4	339.4
Sapindus saponaria	9	36.4	62.3	899.7	2698.2	1860.6	5579.9	48.3	100.2
Sapium haematospermum	10 3	20.3 12.5	34.9 16.4	229.5 60.2	663.3 107.2	474.5 124.5	1371.8 221.7	21.2 8.5	43.8 12.4
Schefflera arboricola Schinopsis lorentzii	1	13.2	13.2	54.5	54.5	112.6	112.6	9.0	9.0
Schinus areira	52	47.9	240.6	3094.6	45491.6	6399.6	94076.6	58.6	421.5
Schinus terebinthifolia	9	18.2	48.4	193.4	1102.3	399.9	2279.6	14.8	50.5
Scutia buxifolia	6	26.5	43.9	411.4	1160.1	850.7	2399.1	30.6	61.0
Sebastiania brasiliensis	10	20.4	45.9	265.6	1287.9	549.2	2663.4	21.8	64.8
S. commersoniana	3	16.1	18.6	105.9	145.2	219.1	300.4	14.6	17.8
Senegalia praecox	1	29.6	29.6	189.1	189.1	391.1	391.1	14.7	14.7
Senna spectabilis	7	24.3	54.4	180.4	820.0	373.1	1695.7	11.9	34.8
S. giganteum	1	43.9	43.9	837.1	837.1	1731.0	1731.0	34.5	34.5
S. granuloso-leprosum	100	17.9	39.9	164.7	922.3	340.6	1907.3	17.6	53.2
Sorbus aucuparia	1	11.2	11.2	18.2	18.2	37.6	37.6	3.0	3.0
Strelitzia nicolai	3	15.0	16.6	73.1	91.4	151.2	189.0	0.6	0.7
Strychnos brasiliensis	1	25.2	25.2	302.3	302.3	625.2	625.2	22.8	22.8
Styphnolobium japonicum	17	39.1	107.0	601.8	4184.5	1244.5	8653.6	22.0	83.7
S. japonicum var. pendula	2	32.9	37.2	251.8	328.9	520.8	680.2	15.9	18.8
Syagrus romanzoffiana	20	32.8	92.2	613.8	4906.7	1269.3	10147.0	1.8	6.7
Taxodium distichum	5	51.4	72.0	1373.8	2847.0	2841.1	5887.5	44.5	71.8
Taxus baccata	1	33.6	33.6	431.3	431.3	892.0	892.0	23.2	23.2
Tecoma stans	8	12.7	15.0	43.7	60.8	90.4	125.7	6.8	8.1
Thuja occidentalis	15	38.9	117.8	1099.6	9636.9	2274.1	19929.0	19.4	90.1
Thuja orientalis	4	44.0	83.6	1405.7	4119.8	2907.1	8519.8	23.7	54.3
Tilia viridis ssp. ×moltkei Tipuana tipu	113 270	55.0 68.9	121.3 142.1	1778.3 2913.7	11619.3 13407.5	3677.5 6025.5	24028.8 27726.6	27.4 123.3	92.1 314.2
Trachycarpus fortunei	18	20.0	76.7	2913.7	3206.6	570.2	6631.2	0.4	2.3
Ulmus laevis	2	80.1	92.7	4483.7	6111.2	9272.2	12638.0	177.8	2.5
Ulmus parvifolia	3	30.4	39.4	447.7	777.8	925.8	1608.5	45.0	64.4
Ulmus procera	51	48.9	112.4	2418.7	9732.0	5002.0	20125.7	54.1	153.6
Ulmus pumila	27	42.0	119.1	1450.5	11210.0	2999.6	23182.4	77.0	309.8
Vachellia aroma	5	15.4	21.0	80.1	142.6	165.7	294.8	2.0	2.7
Vachellia caven	13	14.0	19.2	66.2	119.2	136.9	246.4	1.8	2.5
Vitis vinifera	10	13.2	23.2	60.0	200.8	124.0	415.2	7.7	16.1
Washingtonia filifera	4	35.6	49.4	592.5	1153.4	1225.4	2385.2	4.0	6.0
Washingtonia robusta	4	62.5	67.5	2005.2	2381.6	4146.8	4925.0	8.3	9.1
Wisteria sinensis	1	18.5	18.5	144.0	144.0	297.9	297.9	14.7	14.7
Yucca elephantipes	29	27.4	124.8	1001.2	14456.5	2070.5	29896.0	2.2	15.6
Zanthoxylum coco	1	43.6	43.6	1141.9	1141.9	2361.5	2361.5	60.4	60.4
Zanthoxylum rhoifolium	5	27.7	40.7	505.0	967.3	1044.3	2000.4	33.5	54.8
Ziziphus mistol	1	43.4	43.4	1129.9	1129.9	2336.6	2336.6	60.0	60.0
Total	6600	35.1	240.6	1168.7	55494.7	2416.9	114763.1	46.1	1627.3

n: número de árboles medidos por especie, DAP: Diámetro normal a 1.3 m en cm como promedio; M: Máximo; B: Promedio de la Biomasa aérea por especie en Kg, CO2eq: Promedio del dióxido de carbono equivalente fijado en Mg, CO2eq A: Promedio del dióxido de carbono equivalente fijado en Mg por año.

6. RECOMENDACIONES

Se recomienda la plantación de especies forestales en dependencias que poseen terreno propicio para hacerlo, como por ejemplo: 36- GBU – Grupo urbano centro – Presidencia, Edificio Dirección de Servicios Sociales (LOCALIDAD: Av. 53 N° 417 – 419 e/ Calle 3 y Calle 4, La Plata. SUPERFICIE DEL TERRENO: 600 m²) y 31- GBU – Grupo urbano centro – Facultad de Psicología – Edificio Anexo – Ex CEPAVE (LOCALIDAD: Calle 2 N° 584 e/ Calle 43 y Calle 44, La Plata. SUPERFICIE DEL TERRENO: 604 m²) entre muchas otras.

Debido a la baja proporción de especies nativas, y su importancia en su conservación se sugiere en futuras plantaciones forestales la elección de especies forestales pertenecientes a la Flora de la Provincia de Buenos Aires, como por ejemplo: Acacia caven (Molina) Molina, Eugenia uruguayensis Cambess., Acanthosyris spinescens Griseb., Symplocos uniflora (Pohl) Benth., Pouteria salicifolia (Spreng.) Radlk., Sebastiania commersoniana (Baill.) L.B.Sm. & Downs., Inga affinis DC., Blepharocalyx salicifolius (Kunth) O.Berg, Lonchocarpus nitidus (Vogel) Benth., Neltuma caldenia (Burkart) C.E. Hughes & G.P. Lewis, Neltuma alba (Griseb.) C.E. Hughes & G.P. Lewis, Neltuma flexuosa (DC.) C.E. Hughes & G.P. Lewis, Luehea divaricata Mart., Myrsine parvula (Mez) Otegui, Scutia buxifolia Reissek, Zanthoxylum fagara (L.) Sarg., Celtis tala Gillies ex Planch., Schinus longifolia (Lindl.) Speg., Allophylus edulis (A.St.-Hil., A.Juss. & Cambess.) Radlk., Citharexylum montevidense (Spreng.) Moldenke, Ocotea acutifolia (Nees) Mez, Erythrina crista-galli L. o Ficus luschnathiana (Miq.) Miq. Todas estas especies se producen actualmente en la Unidad de Vivero Forestal perteneciente a la Facultad de Ciencias Agrarias y Forestales (UVF - FCAyF), y a su vez podría servir como salida laboral (o incentivo) para estudiantes a través de becas de experiencia laboral.

Asimismo, cabe destacar que la especie forestal *Quercus robur* -cuyas hojas fueron inspiración del distintivo de la UNLP (Fundación Museo La Plata, 1997)- se encuentra pobremente representada en el arbolado de la UNLP, con solo un 0.85% del total (56 ejemplares). La sugerencia de los autores de este informe es que se realice la colecta de semillas del peque-ño robledal de *Quercus robur* que data de 1856 (Delucchi et al. 1993) ubicado en el Paseo del Bosque, entre el predio de Estudiantes de La Plata y la Plaza Almirante Guillermo Brown, y que se realice su producción en la Unidad Vivero Forestal de la FCAyF - UNLP y se planten en las dependencias de la UNLP.

También se sugiere realizar la extracción de los ejemplares muertos oy con solo una pequeña porción de su copa en buen estado, y su debida reposición con especies recomendadas.

Con respecto al inventario, es muy importante aumentar el número de parcelas de muestreo en las dependencias: 1- Colegio Agropecuario Inchausti (LOCALIDAD: Estación Valdez, 25 de mayo. SUPERFICIE DEL TERRENO: 47241612 m²) donde se realizó solo una parcela de muestreo, pudiendo el resultado del CO₂eq presentar alto error. Se recomienda aumentar el número de parcelas a 5 como mínimo y realizar el censo en el arbolado ornamental en las cercanías de edificios. Las dependencias 40-Facultad de Ciencias Agrarias y Forestales - Establecimiento Don Joaquín (LOCALIDAD: RP 36 y acceso a Gral. Mansilla (Bavio), Magdalena. SUPERFICIE DEL TERRENO: 4260000 m²) y 2- Facultad de Ciencias Agrarias, Campo 6 de agosto (LOCALIDAD: Avenida 60 y 128, Berisso. SUPERFICIE DEL TERRENO: 555396 m²) se instalaron 2 parcelas, recomendando aumentar a 5. Con respecto a 7-Facultad de Cs Agrarias y Veterinarias − Santa Catalina (LOCALIDAD: Av. Juan XXIII Barrio Santa Catalina, Lomas de Zamora. SUPERFICIE DEL TERRENO 3595164 m²) como en el caso de 1- Colegio Agropecuario Inchausti se sugiere aumentar el número de parcelas de 3 a 5 como mínimo y realizar el censo en el arbolado ornamental en las cercanías de edificios. Para 10- Presidencia − Museo y Finca Samay Huasi (LOCALIDAD: Chilecito, La Rioja. SUPERFICIE DEL TERRENO: 660000 m²) aumentar de 3 a 5 parcelas.

Y finalmente, se recomienda volver a realizar este trabajo dentro de 5 años (setiembre de 2027) para determinar los cambios en la fijación del CO₂eq, las variaciones en el número de ejemplares forestales y crecimientos en DAP utilizando las diferencias con respecto al inventario de 2022.

7. BIBLIOGRAFIA

Alberti G, Candido P, Peressotti A, Turco S, Piussi P. 2005. Aboveground biomass relationships for mixed ash (*Fraxinus excelsior* L. and *Ulmus glabra* Hudson) stands in Eastern Prealps of Friuli Venezia Giulia (Italy). Annals of Forest Science 62(8): 831-836.

Delucchi G, Julianello AA, Correa RF. 1993. Los espacios verdes y el arbolado urbano en el área de La Plata

I. Orígenes y evolución hasta el presente. Museo (1): 61-65. http://sedici.unlp.edu.ar/handle/10915/47076

Chave J, Andalo C, Brown S, Cairns MA, Chambers JQ, Eamus D, Fölster H, Fromard F, Higuch N, Kira T, Lescure JP, Nelson BW, Ogawa H, Puig H, Riéra B, Yamakura T. 2005. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145(1): 87–99.

Brown S, Gillapse AJR, Lugo AE. 1989. Biomass estimation methods for tropical forests with application to forest inventory data. Forest Science 35: 881-902

Chojnacky DC, Heath LS, Jenkins JC. 2014. Updated generalized biomass equations for North American tree species. Forestry 87(1): 129-151.

Fundación Museo La Plata, 1997. Los símbolos de la universidad : El distintivo, el himno y el escudo. Museo 9: 67-73.

Hung DN, Son NV, Hung NP. 2012. Tree allometric equations in Evergreen broadleaf forests in North Central Coastal region, Viet Nam, in (Eds) Inoguchi A, Henry M, Birigazzi L. Sola G. Tree allometric equation development for estimation of forest above-ground biomass in Viet Nam, UN-REDD Programme, Hanoi, Viet Nam.

Lucero A, Muñoz F, Cancino JC, Sotomayor A, Dube F, Villarroel A, Sáez K. 2018. Función de biomasa para *Acacia caven* (Mol.) Mol. distribuida en áreas secas del centro sur de Chile. Revista de la Facultad de Ciencias Agrarias UNCuyo 50(2): 187-201.

Nogueira E, Fearnside P, Nelson B, Barbosa R, Keizer E. 2008. Estimates of forest biomass in the Brazilian Amazon: New allometric equations and adjustments to biomass from wood-volume inventories. Forest Ecology and Management 256(11): 1853-1867.

Rai SN. 1984. Bark, Branches, Leaves, Stump and Trunk in tropical rain forests of western ghats, Indian Forester 110(8): 754-764.

Rodríguez R, Jiménez J, Meza J, Aguirre O,Razo R. 2008. Carbono contenido en un bosque tropical subcaducifolio en la reserva de la biosfera el cielo, Tamaulipas, México. Revista Latinoamericana de Recursos Naturales 4(2): 215 -222.

Sáenz T, Rueda A, Benavides JdD, Muñoz HJ, Castillo D, Sáenz JE. 2021. Ecuaciones alométricas, Biomasa y Carbono en plantaciones forestales tropicales en la costa de Jalisco. Revista Mexicana de Ciencias Forestales 12(65): 124-135.

Taurian M, Alvarez J, Ramilo D, Poulsen JP, Cellini JM, Rivera SM. 2005. Estructura forestal de la Reserva privada Cuña Pirú, Provincia de Misiones, Argentina. Tercer Congreso forestal Argentino y Latinoamericano, 6: 13-14.

Vashum KT, Jayakumar S. 2012. Methods to Estimate Above-Ground Biomass and Carbon Stock in Natural Forests - A Review. Journal of Ecosystem & Ecology 2(4): 7-15.

Williams RJ, Zerihun A, Montagu KD, Hoffman M, Hutley LB, Chen X, 2005. Allometry for estimating aboveground tree biomass in tropical and subtropical eucalypt woodlands: towards general predictive equations. Australian Journal of Botany 53: 607-619.

8. ANEXOS

Mapas de las dependencias pertenecientes a la UNLP con la localización de los árboles medidos (Figura 3 a la 17).

Figura 3. 01-Colegio Agropecuario Inchausti

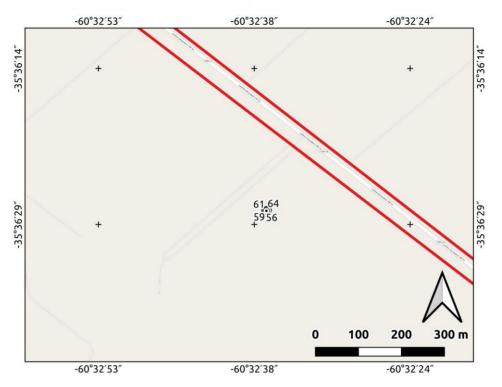


Figura 4. 40-Facultad de Ciencias Agrarias y Forestales - Establecimiento Don Joaquín

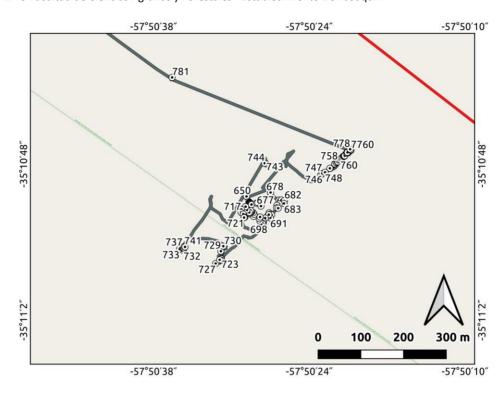
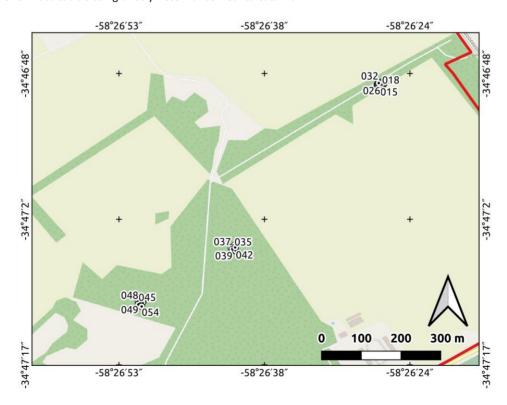



Figura 5. 07-Facultad de Cs Agrarias y Veterinarias – Santa Catalina

Figura 6. 32-GBU – Grupo urbano centro – Manzana Edificio Plaza Rocha – Facultad de Bellas Artes y Biblioteca Central y 33-GBU – Grupo urbano centro – Manzana Ex Distrito – Facultades de Bellas artes y Trabajo social y Bachillerato de Bellas Artes

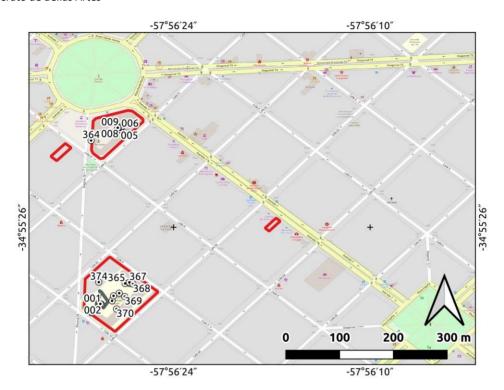
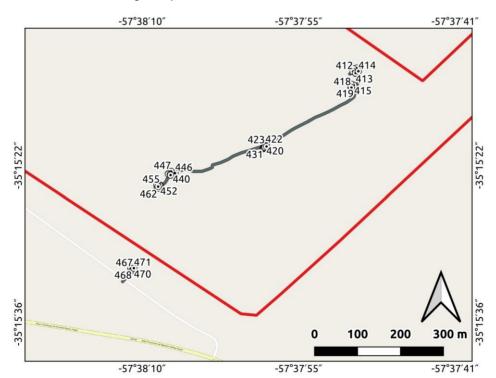



Figura 7. 41-Facultad de Ciencias Agrarias y Forestales - Establecimiento El Amanecer

Figura 8. 11- GBC – Grupo bosque centro – Facultades de Cs Astronómicas, Planetario y Jardín Maternal, 13- GBE – Grupo bosque este – Parcela A, 14- GBE – Grupo bosque este – Parcela B y Paseo del Bosque.

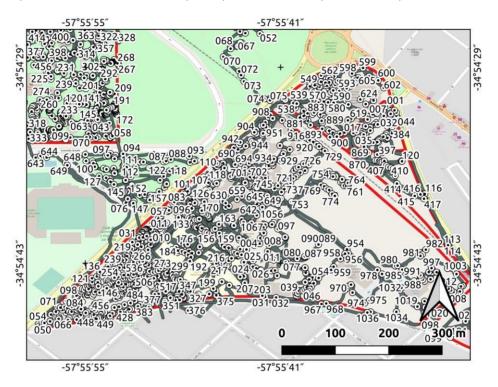
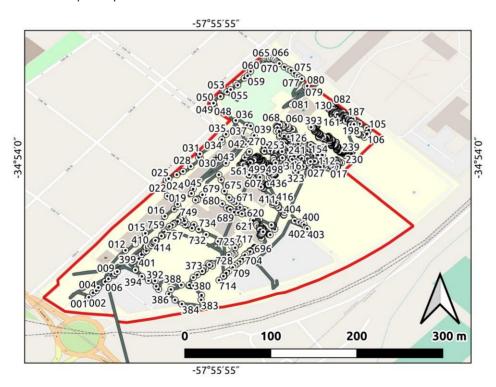
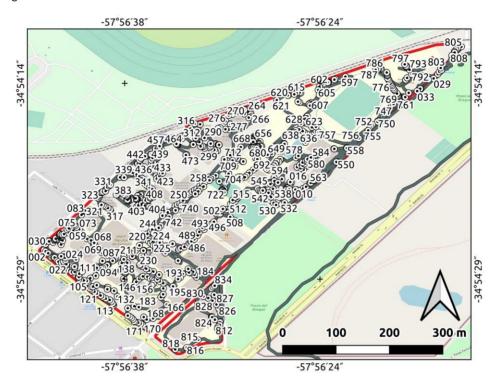
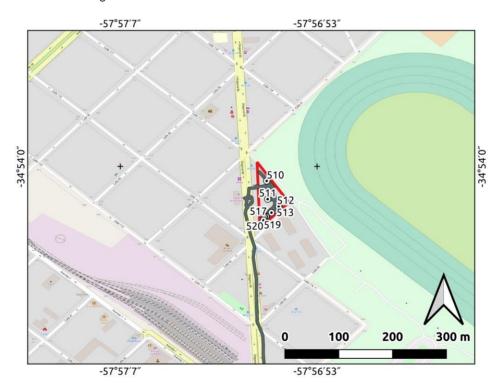
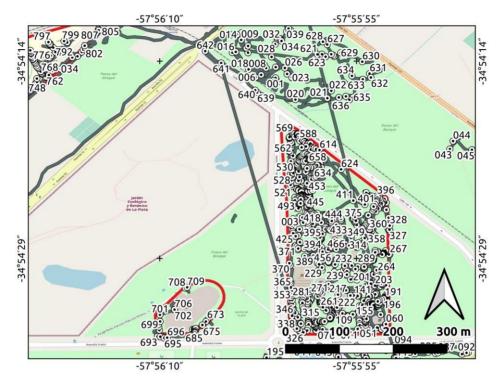



Figura 9. 16- GBN -Grupo bosque norte

Figura 10. 17- GBO –Grupo bosque oeste – Parcela A, 18- GBO –Grupo bosque oeste – Parcela B – Facultad de Odontología

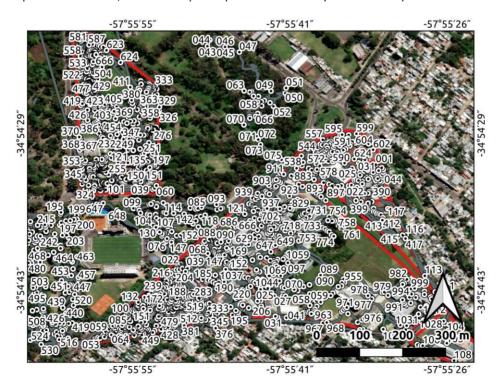

Figura 11. 6- Facultad de Ingeniería – Instituto Malvinas de Políticas Soberanas

Figura 12. 12- GBC –Grupo bosque centro – Museo de Ciencias Naturales, 11- GBC –Grupo bosque centro – Facultades de Cs Astronómicas, Planetario y Jardín Maternal

Figura 13. 11- GBC – Grupo bosque centro – Facultades de Cs Astronómicas, Planetario y Jardín Maternal, 13- GBE – Grupo bosque este – Parcela A, 14- GBE – Grupo bosque este – Parcela B y Paseo del Bosque.

Figura 14. 27- GBU – Grupo urbano centro – Facultad de Ciencias Naturales – Instituto Spegazzini, 34- GBU – Grupo urbano centro – Manzana Liceo V Mercante, 35- GBU – Grupo urbano centro – Manzana Presidencia, Edificio Karakachoff y Facultad de CS Económicas

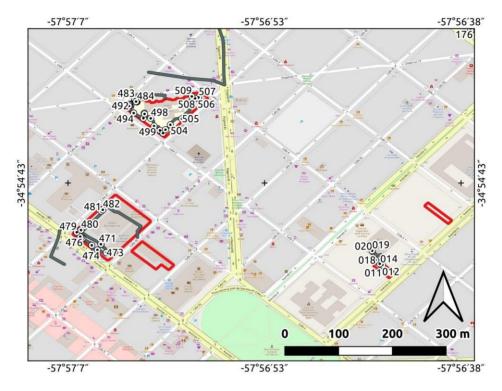


Figura 15. 10- Presidencia – Museo y Finca Samay Huasi

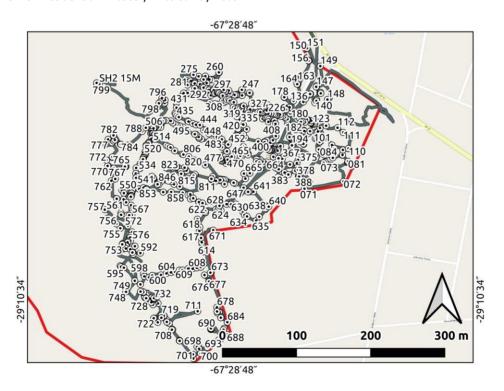


Figura 16. 3- Facultad de Ciencias Agrarias, Estación experimental Julio Hirschhörn

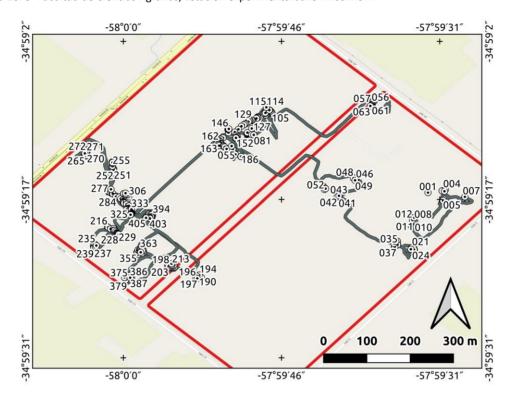
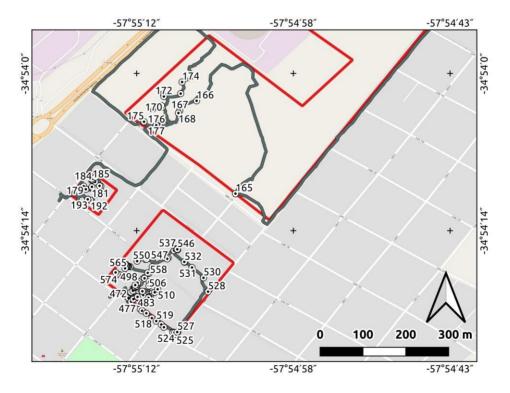
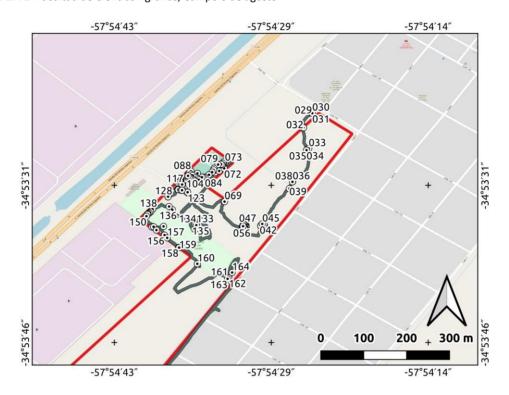
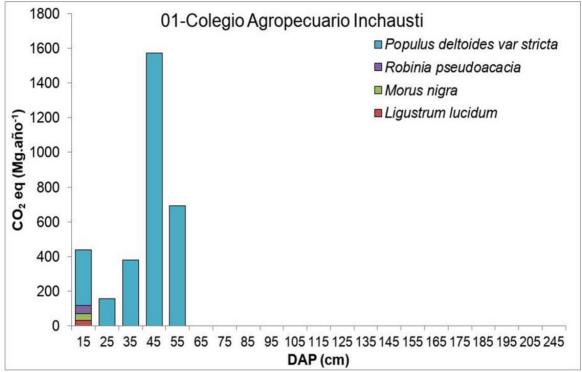


Figura 16. 2- Facultad de Ciencias Agrarias, Campo 6 de agosto


Figura 17. 2- Facultad de Ciencias Agrarias, Campo 6 de agosto

Gráficos de barras de la distribución del CO₂eq para cada clase de diámetro de árboles para cada dependencia perteneciente a la UNLP con discriminación por especie. Las especies que aportan menos del 1% del CO₂eq se agruparon en "Otras". (Figura 18 a la 43).


En la Figura 18 se observa la distribución de CO₂ fijado según el crecimiento en DAP para las cuatro especies presentes en el muestreo por parcelas realizado sobre el Colegio Agropecuario Inchausti. Presentando los mayores valores de fijación en la especie *Populus deltoides var stricta* para las clases de 45 y 55 cm de DAP.

Figura 18. CO₂ eq fijado para las especies presentes en el Colegio Agropecuario Inchausti.

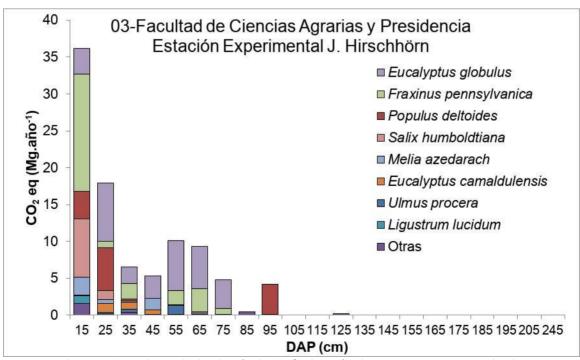
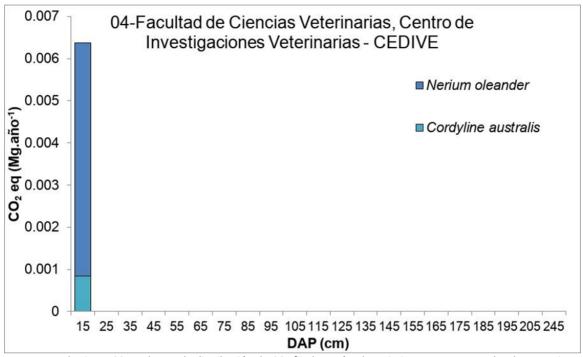

En la Figura 19 se observa la distribución de CO₂ fijado según el crecimiento en DAP para las especies presentes en el muestreo total del Campo "6 de Agosto". Presentando el mayor valor de fijación en la especie *Fraxinus pennsylvanica* para su clase de crecimiento más baja, 15 cm de DAP.

Figura 19. CO₂ eq fijado para las especies presentes en la Facultad de Ciencias Agrarias / Campo "6 de Agosto"

En la Figura 20 se observa la distribución de CO₂ fijado según el crecimiento en DAP para las especies presentes en el muestreo total de la Facultad de Ciencias Agrarias y muestreo por parcelas en la Estación Experimental J. Hirschhörn. Presentando el mayor valor de fijación en la clase de 15 cm de DAP, correspondiente a diferentes especies.

Figura 20. CO₂ fijado para las especies presentes en la Facultad de Ciencias Agrarias y Estación Experimental J. Hirschhörn.



En la Figura 21 se observa la distribución de CO₂ fijado según el crecimiento en DAP para las dos especies presentes en el muestreo total de la Facultad de Ciencias Veterinarias y Centro de Investigaciones Veterinarias - CEDIVE. Presentando su contribución en la menor clase de crecimiento, 15 cm de DAP, correspondiente a las especies

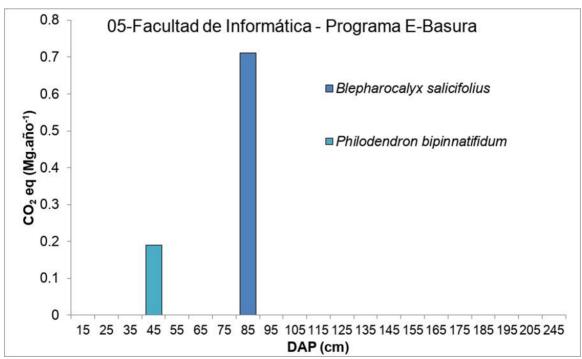

Nerium oleander y Cordyline australis.

Figura 21. CO₂ fijado para las especies presentes en la Facultad de Ciencias Veterinarias y Centro de Investigaciones Veterinarias - CEDIVE

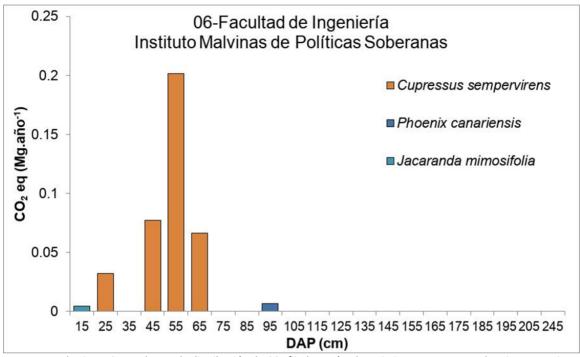

En la Figura 22 se observa la distribución de CO₂ fijado según el crecimiento en DAP para las dos especies presentes en el muestreo total de la Facultad de Informática y Programa E-Basura. Presentando su contribución en clases de crecimiento intermedias, 45 y 85 cm de DAP, Blepharocalyx salicifolius y Philodendron bipinnatifidum.

Figura 22. CO₂ fijado para las especies presentes en la Facultad de Informática y Programa E-Basura

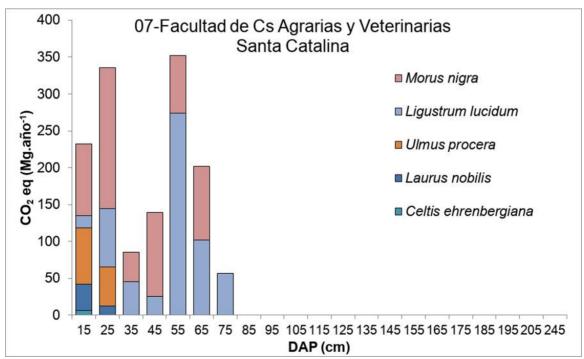

En la Figura 23 se observa la distribución de CO₂ fijado según el crecimiento en DAP para las tres especies presentes en el muestreo total de la Facultad de Ingeniería e Instituto Malvinas de Políticas Soberanas. Presentando su contribución en diferentes clases de crecimiento.

Figura 23. CO₂ fijado para las especies presentes en la Facultad de Ingeniería e Instituto Malvinas de Políticas Soberanas

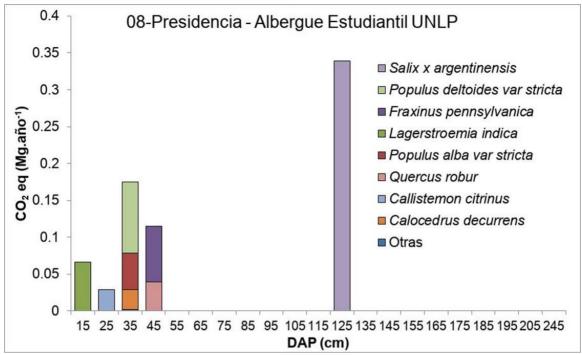

En la Figura 24 se observa la distribución de CO₂ fijado según el crecimiento en DAP para las cinco especies presentes en el muestreo mediante parcelas realizado sobre la Facultad de Ciencias Agrarias y Veterinarias / Santa Catalina. Presentando aportes continuos en sus clases de crecimiento de 15 a 75 cm de DAP.

Figura 24. CO₂ fijado para las especies presentes en Facultad de Ciencias Agrarias y Veterinarias / Santa Catalina

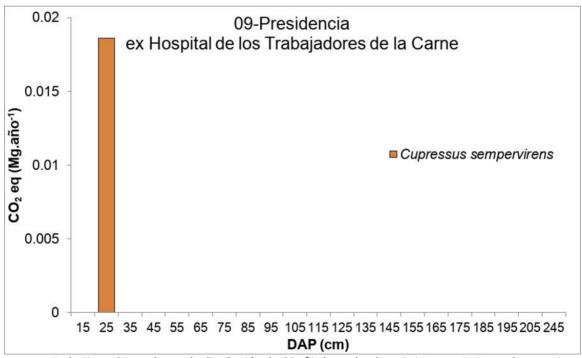

En la Figura 25 se observa la distribución de CO₂ fijado según el crecimiento en DAP para las especies presentes en el muestreo total de Presidencia / Albergue Estudiantil UNLP. Presentando el mayor valor de fijación en la especie *Salix x argentiniensis* para la clase de 125 cm de DAP.

Figura 25. CO₂ fijado para las especies presentes en Presidencia / Albergue Estudiantil UNLP.

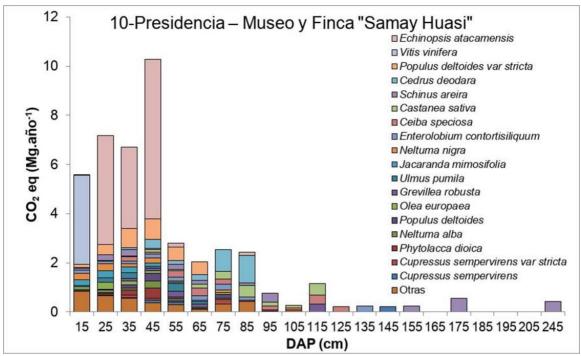

En la Figura 26 se observa la distribución de CO₂ fijado según el crecimiento en DAP para la especie presente en el muestreo total de Presidencia / ex Hospital de los Trabajadores de la Carne. Presentando su contribución en la clase de 25 cm de DAP para la única especie presente *Cupressus sempervirens*.

Figura 26. CO₂ fijado para las especies presentes en Presidencia / ex Hospital de los Trabajadores de la Carne.

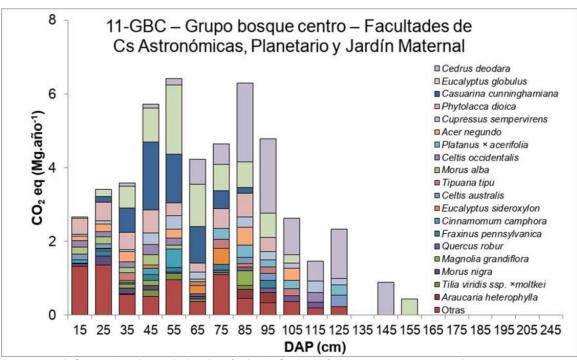

En la Figura 27 se observa la distribución de CO₂ fijado según el crecimiento en DAP para las especies presentes en el muestreo total de Presidencia / Museo y Finca "Samay Huasi". Presentando una contribución continua a las distintas clases de DAP, siendo mayor en la clase de 45 cm, correspondiente a diferentes especies.

Figura 27. CO₂ fijado para las especies presentes en Presidencia / Museo y Finca "Samay Huasi".

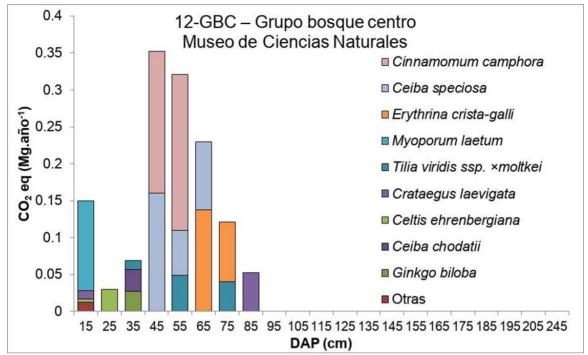

En la Figura 28 se observa la distribución de CO₂ fijado según el crecimiento en DAP para las especies presentes en el muestreo total de GBC - Facultades de Cs. Astronómicas, Planetario y Jardín maternal. Presentando contribuciones continuas hasta los 125 cm de clase de DAP, siendo mayor para las clases de 55 cm y 95 cm correspondientes a diferentes especies.

Figura 28. CO_2 fijado para las especies presentes en GBC - Facultades de Ciencias Astronómicas, Planetario y Jardín Maternal.

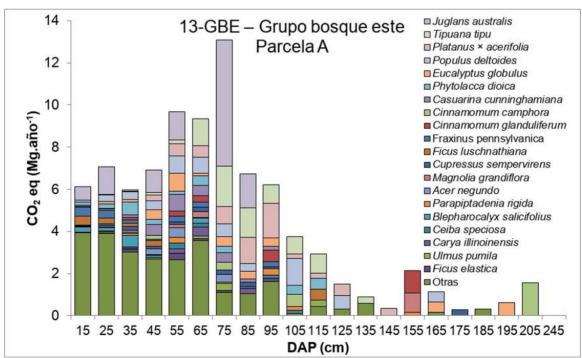

En la figura 29 se observa la distribución de CO₂ fijado según crecimiento en DAP para las especies presentes en el muestreo total de GBC - Museo de Ciencias Naturales. La mayor contribución se da en la clase de 45 cm de DAP, correspondiente a las especies *Ceiba speciosa* y *Cinnamomum camphora*.

Figura 29. CO₂ fijado para las especies presentes en GBC - Museo de Ciencias Naturales.

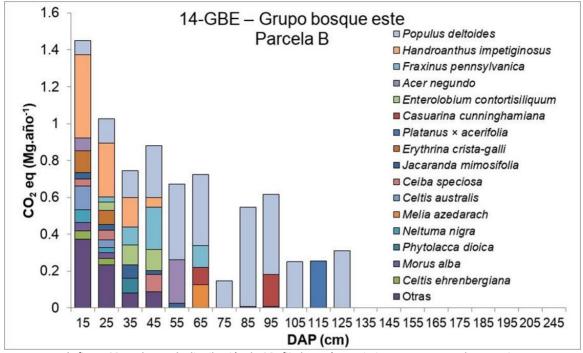

En la figura 30 se observa la distribución de CO₂ fijado según crecimiento en DAP para las especies presentes en el muestreo total de GBE - Parcela A. Presentando una contribución continua en las distintas clases de DAP, siendo mayor en la clase de 75 cm correspondiente a diferentes especies, con predominancia de *Juglans australis*.

Figura 30. CO₂ fijado para las especies presentes en GBE - Parcela A

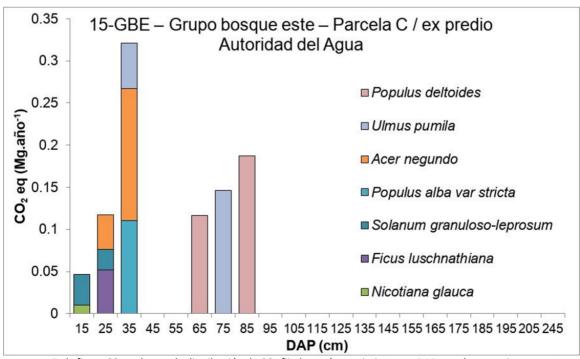

En la figura 31 se observa la distribución de CO₂ fijado según crecimiento en DAP para las especies presentes en el muestreo total de GBE - Parcela B. Presentando una contribución continua en las clases de DAP presentes, siendo mayor en la clase de 15 cm de DAP.

Figura 31. CO2 fijado para las especies presentes en GBE - Parcela B

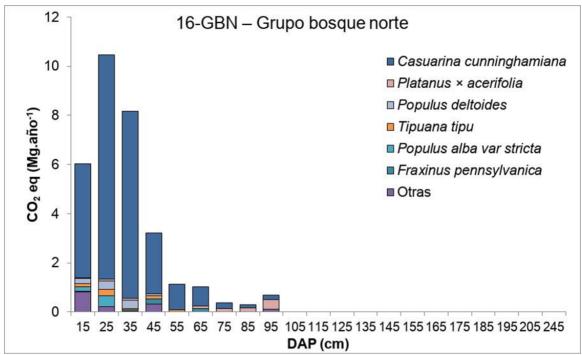

En la figura 32 se observa la distribución de CO_2 fijado según crecimiento en DAP para las especies presentes en el muestreo total de GBE - Parcela C / ex predio Autoridad del Agua. Presentando la mayor contribución para la clase de 35 cm de DAP, correspondiente a las especies *Acer negundo, Populus alba var. stricta* y en menor medida *Ulmus pumila*.

Figura 32. CO₂ fijado para las especies presentes en GBE - Parcela C.

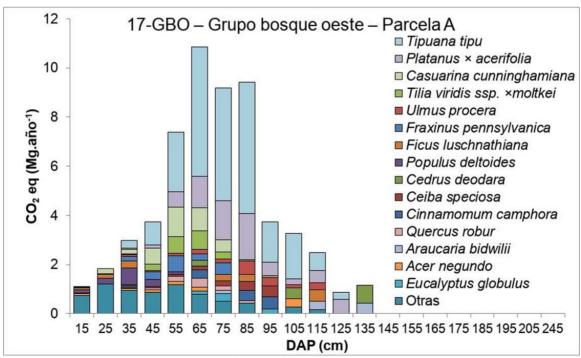

En la figura 33 se observa la distribución de CO₂ fijado según crecimiento en DAP para las especies presentes en el muestreo total de GBN. Presentando una contribución continua en las clases de DAP presentes con predominancia de la especie *Casuarina cunninghamiana*, siendo mayor la contribución en la clase de 25 cm de DAP.

Figura 33. CO₂ fijado para las especies presentes en GBN.

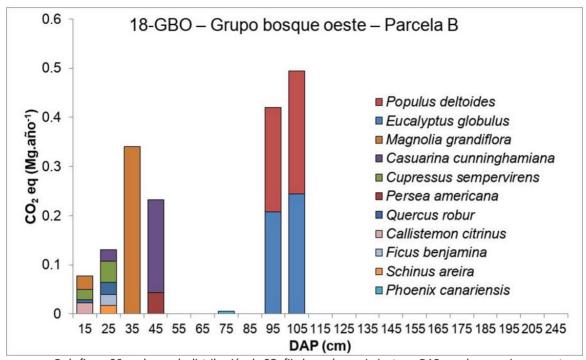

En la figura 34 se observa la distribución de CO_2 fijado según crecimiento en DAP para las especies presentes en el muestreo total de GBO - Parcela A. Presentando una contribución continua en las clases de DAP presentes, siendo mayor en las clases intermedias.

Figura 34. CO₂ fijado para las especies presentes en GBO - Parcela A

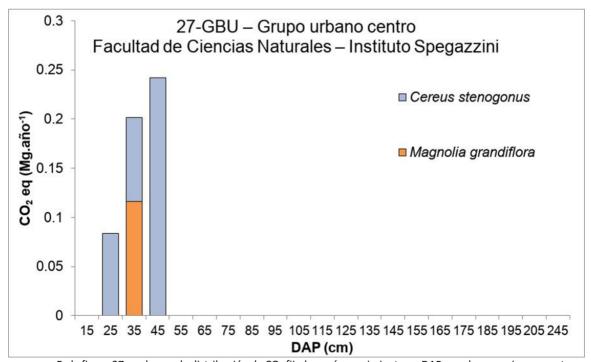

En la Figura 35 se observa la distribución de CO₂ fijado según crecimiento en DAP para las especies presentes en el muestreo total de GBO - Parcela B. Presentando la mayor contribución en la clase de 105 cm de DAP, correspondiente a las especies *Populus deltoides* y *Eucalyptus globulus*.

Figura 35. CO₂ fijado para las especies presentes en GBO - Parcela B.

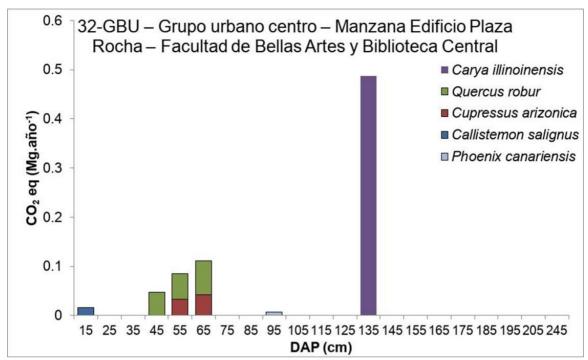

En la figura 36 se observa la distribución de CO_2 fijado según crecimiento en DAP para las especies presentes en el muestreo total de GUC - Facultad de Ciencias Naturales / Instituto Spegazzini. Presentando la mayor contribución en la clase de 55 cm de DAP correspondiendose con *Cereus stenogonus* como única especie.

Figura 36. CO₂ fijado para las especies presentes en GUC - Facultad de Ciencias Naturales /Instituto Spegazzini.

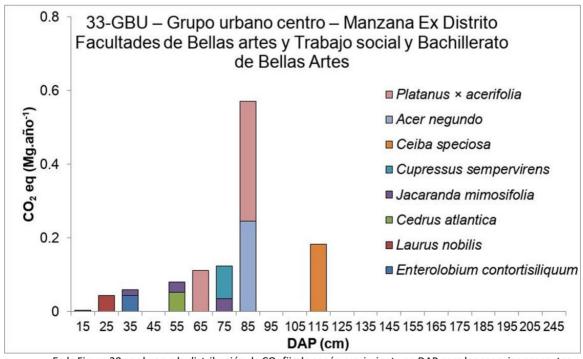
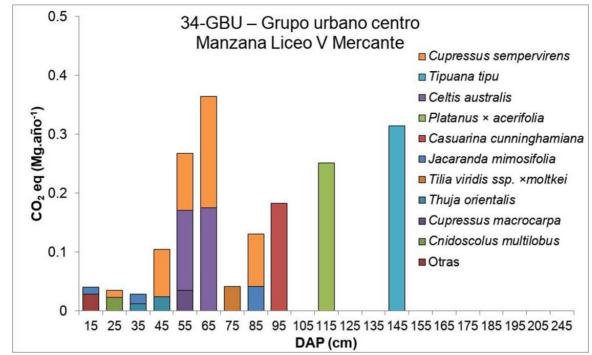

En la figura 37 se observa la distribución de CO₂ fijado según crecimiento en DAP para las especies presentes en el muestreo total de GUC - Manzana Edificio Plaza Rocha / Facultad de Bellas Artes y Biblioteca Central. Presentando la mayor contribución en la clase de 135 cm de DAP, correspondiente a la única especie *Carya illinoinensis*.

Figura 37. CO₂ fijado para las especies presentes en 32- GBU – Grupo urbano centro – Manzana Edificio Plaza Rocha – Facultad de Bellas Artes y Biblioteca Central.

En la figura 38 se observa la distribución de CO₂ fijado según crecimiento en DAP para las especies presentes en el muestreo total de GUC - Manzana ex Distrito Facultades de Bellas Artes, Trabajo Social y Bachillerato de Bellas Artes. Presentando la mayor contribución en la clase de 85 cm de DAP, correspondiente a las especies *Platanus x acerifolia* y *Acer negundo*.

Figura 38. CO₂ fijado para las especies presentes en 33- GBU – Grupo urbano centro – Manzana Ex Distrito – Facultades de Bellas artes y Trabajo social y Bachillerato de Bellas Artes



En la Figura 39 se observa la distribución de CO₂ fijado según crecimiento en DAP para las especies presentes en el muestreo total de GUC - Manzana Liceo V Mercante. Presentando la mayor contribución en la clase de 65 cm

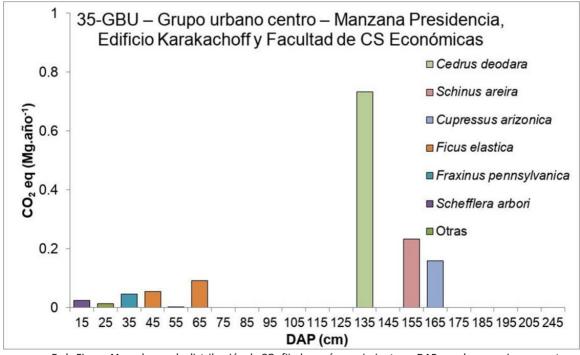
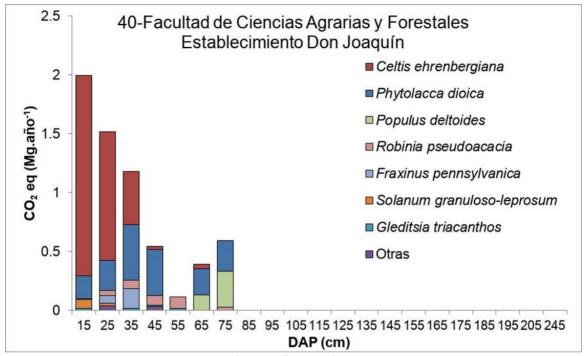

 $\ \, \text{de DAP, correspondiente a las especies } \textit{Cupressus sempervirens} \, \text{y } \textit{Celtis australis}.$

Figura 39. CO₂ fijado para las especies presentes en 34- GBU - Grupo urbano centro - Manzana Liceo V Mercante.

En la Figura 40 se observa la distribución de CO₂ fijado según crecimiento en DAP para las especies presentes en el muestreo total de GUC - Manzana Presidencia, Edificio Karakachoff y Facultad de Ciencias Económicas. Presentando la mayor contribución en la clase de 135 cm de DAP, correspondiente a la especie *Cedrus deodara*.

Figura 40. CO₂ fijado para las especies presentes en 35- GBU – Grupo urbano centro – Manzana Presidencia, Edificio Karakachoff y Facultad de CS Económicas.



En la Figura 41 se observa la distribución de CO_2 fijado según crecimiento en DAP para las especies presentes en el muestreo total de la Facultad de Ciencias Agrarias y Forestales / Establecimiento Don Joaquín. Presentando las mayores contribuciones en las clases de DAP menores, con predominancia de la especie *Celtis ehrenbergiana* en las mismas.

Dirección de Seguridad, Higiene y Desarrollo Sustentable Dirección General de Construcciones y Mantenimiento SECRETARÍA DE PLANEAMIENTO, OBRAS Y SERVICIOS

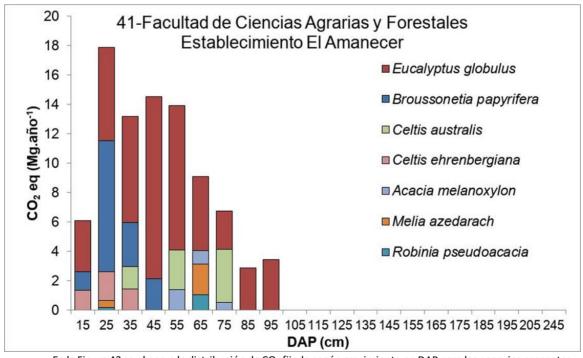
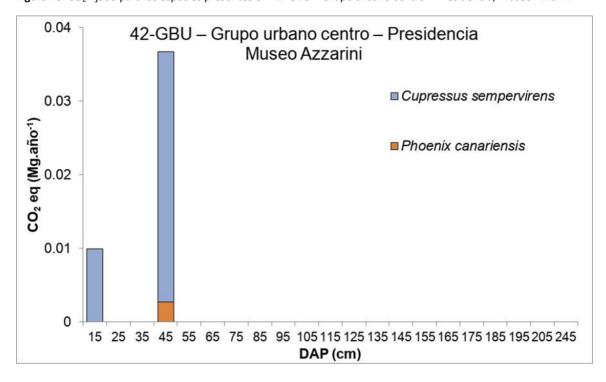


Figura 41. CO_2 fijado para las especies presentes en 40-Facultad de Ciencias Agrarias y Forestales - Establecimiento Don Joaquín.

En la Figura 42 se observa la distribución de CO₂ fijado según crecimiento en DAP para las especies presentes en el muestreo total de la Facultad de Ciencias Agrarias y forestales / Establecimiento El Amanecer. Presentando una contribución continua en todas las clases de DAP presentes, siendo mayor en la clase de 25 cm de DAP.

Figura 42. CO₂ fijado para las especies presentes en 41-Facultad de Ciencias Agrarias y Forestales - Establecimiento El Amanecer.


En la Figura 43 se observa la distribución de CO₂ fijado según crecimiento en DAP para las especies presentes en el muestreo total de GUC - Presidencia / Museo Azzarini. Presentando la mayor contribución en la clase de 45 cm de DAP, correspondiente a las especies *Cupressus sempervirens* y *Phoenix canariensis*.

Dirección de Seguridad, Higiene y Desarrollo Sustentable Dirección General de Construcciones y Mantenimiento SECRETARÍA DE PLANEAMIENTO, OBRAS Y SERVICIOS

Figura 43. CO₂ fijado para las especies presentes en 42- GBU - Grupo urbano centro - Presidencia, Museo Azzarini

