Descubren un compuesto para mejorar la calidad y los rindes de los cultivos de maíz

Investigadores de La Universidad Nacional de La Plata identificaron un compuesto que potencia la capacidad del maíz para captar fósforo del suelo, un mineral esencial para su ciclo de vida, que se aplica como fertilizante para mejorar los rindes de los cultivos.

El fósforo es un mineral extraído de yacimientos, y como la Argentina no posee ese recurso, el fertilizante utilizado es importado. Ahora, el estudio liderado por científicos de la Universidad Nacional de La Plata (UNLP) y del CONICET abre un camino para reducir la dependencia de ese insumo. “Nuestro trabajo no solo es importante para el desarrollo y crecimiento del maíz, sino también para el desarrollo sustentable de todo el sistema de producción agrícola en nuestro país”, señaló la directora del estudio, la doctora Marcela Simontacchi, del Instituto de Fisiología Vegetal (INFIVE), que depende de la UNLP y el CONICET.

Tal como describe la revista “Journal of Plant Physiology”, Simontacchi y sus colegas comprobaron que un compuesto presente en las plantas, nitrosoglutatión, mejoró la capacidad de respuesta de las plantas frente a la restricción de fósforo.

En el estudio, los investigadores sintetizaron el nitrosoglutatión en el laboratorio para obtener mayores cantidades y lo aplicaron en plantas de maíz cultivadas en un invernadero. Paso seguido, constataron que esa sustancia libera óxido nítrico, un gas que, entre otras respuestas, aumenta la capacidad para incorporar el escaso fósforo desde la solución que rodea las raíces.

Si bien las plantas expuestas a este compuesto presentaron una mejor capacidad en la elaboración de ciertas respuestas de aclimatación a la restricción completa de fósforo, “deben desarrollarse más experimentos para poder conocer si estas respuestas se traducen en un mejor desempeño que les permita crecer mejor en un suelo pobre en fósforo”, destacó Simontacchi.

El modelo experimental utilizado por los investigadores de La Plata suministra información científica relevante, pero aún no implica una transferencia inmediata al sector productivo. “Las condiciones de plantas creciendo en el campo pueden ser muy diferentes de las utilizadas por nosotros en condiciones controladas de laboratorio o de invernáculo. Debemos probar esta metodología a mayor escala y probar si funciona en cultivos de interés”, afirmó Simontacchi.

Del avance también participaron Facundo Ramos-Artuso, Agustina Buet y Andrea Galatro, del INFIVE y de la UNLP; y Guillermo Santa María, del Instituto Tecnológico Chascomús, dependiente del CONICET y de la Universidad Nacional de San Martín.

Fuente: Agencia CYTA

Enlaces de interés: 

Key acclimation responses to phosphorus deficiency in maize plants are influenced by exogenous nitric oxide. Journal of plant physiology

Early events following phosphorus restriction involve changes in proteome and affects nitric oxide metabolism in soybean leaves. Environmental and Experimental Botany

Plant survival in a changing environment: the role of nitric oxide in plant responses to abiotic stress. Frontiers in plant science

The complexity of nitric oxide generation and function in plants

Nitric oxide and plant mineral nutrition: current knowledge. Journal of Experimental Botany